Sunny Express Car Wash Air Quality and Greenhouse Gas Impact Study City of Lake Elsinore, CA

Prepared for:

Mr. Justin Barth **Synarc Studio** 17200 Red Hill Avenue Irvine, CA 92614

Prepared by:

MD Acoustics, LLC Mike Dickerson, INCE 1197 Los Angeles Ave, Ste C-256 Simi Valley, CA 93065

Date: 2/15/2021

Noise Study Reports | Vibration Studies | Air Quality | Greenhouse Gas | Health Risk Assessments

P) AZ - 602.774.1950 P) CA - 805.426.4477

www.mdacoustics.com info@mdacoustics.com

TABLE OF CONTENTS

1.0	Intro	duction	1
	1.1	Purpose of Analysis and Study Objectives	1
	1.2	Project Summary	1
		1.2.1 Site Location	1
		1.2.2 Project Description	1
		1.2.3 Sensitive Receptors	2
	1.3	Executive Summary of Findings and Mitigation Measures	2
2.0	Regu	latory Framework and Background	6
	2.1	Air Quality Regulatory Setting	6
		2.1.1 National and State	6
		2.1.2 South Coast Air Quality Management District	8
		2.1.3 Local	11
	2.2	Greenhouse Gas Regulatory Setting	12
		2.2.1 International	12
		2.2.2 National	12
		2.2.3 California	13
		2.2.4 South Coast Air Quality Management District	20
		2.2.5 Local	22
3.0	Setti	ng	24
	3.1	Existing Physical Setting	24
		3.1.1 Local Climate and Meteorology	24
		3.1.2 Local Air Quality	25
		3.1.3 Attainment Status	28
	3.2	Greenhouse Gases	28
4.0	Mod	eling Parameters and Assumptions	31
	4.1	Construction	31
	4.2	Operations	32
	4.3	Localized Construction Analysis	32
	4.4	Localized Operational Analysis	34
5.0	Three	sholds of Significance	35
	5.1	Air Quality Thresholds of Significance	35
		5.1.1 CEQA Guidelines for Air Quality	35
		5.1.2 Regional Significance Thresholds for Construction Emissions	35
		5.1.3 Regional Significance Thresholds for Operational Emissions	35
		5.1.4 Thresholds for Localized Significance	36
	5.2	Greenhouse Gas Thresholds of Significance	36
		5.2.1 CEQA Guidelines for Greenhouse Gas	36
6.0	Air Q	uality Emissions Impact	
	6.1	Construction Air Quality Emissions Impact	38

		6.1.1 Regional Construction Emissions	38
		6.1.2 Localized Construction Emissions	39
		6.1.3 Odors	39
		6.1.4 Construction-Related Toxic Air Contaminant Impact	40
	6.2	Operational Air Quality Emissions Impact	40
		6.2.1 Regional Operational Emissions	40
		6.2.2 Localized Operational Emissions	41
	6.3	CO Hot Spot Emissions	41
	6.4	Cumulative Regional Air Quality Impacts	42
	6.5	Air Quality Compliance	42
7.0	Gree	nhouse Gas Impact Analysis	45
	7.1	Construction Greenhouse Gas Emissions Impact	45
	7.2	Operational Greenhouse Gas Emissions Impact	45
	7.3	Greenhouse Gas Plan Consistency	46
8.0	Refer	rences	51

LIST OF APPENDICES

Appendix A:

CalEEMod Daily Emission Output

Appendix B:

CalEEMod Annual Emission Output

LIST OF EXHIBITS

Exhibit A	4
Location Map	4
Exhibit B	5
Site Plan	5

LIST OF TABLES

Table 1: Land Use Summary	2
Table 2: Ambient Air Quality Standards	7
Table 3: Meteorological Summary	25
Table 4: Local Area Air Quality Levels from the Lake Elsinore Monitoring Stations	26
Table 5: South Coast Air Basin Attainment Status 2	28
Table 6: Description of Greenhouse Gases 3	30
Table 7: Construction Equipment Assumptions ¹ 3	33
Table 8: Regional Significance - Construction Emissions (pounds/day)	38
Table 9: Localized Significance – Construction	39
Table 10: Regional Significance - Unmitigated Operational Emissions (lbs/day)	10
Table 11: Localized Significance – Unmitigated Operational Emissions	11
Table 12: Construction Greenhouse Gas Emissions 4	15
Table 13: Opening Year Unmitigated Project-Related Greenhouse Gas Emissions	16
Table 14: City of Lake Elsinore GHG Reduction Measures for Commercial Developments and Proje Consistency ¹	

GLOSSARY OF TERMS

AQMP	Air Quality Management Plan
CAAQS	California Ambient Air Quality Standards
CARB	California Air Resources Board
CEQA	California Environmental Quality Act
CFCs	Chlorofluorocarbons
CH ₄	Methane
CNG	Compressed natural gas
СО	Carbon monoxide
CO ₂	Carbon dioxide
CO ₂ e	Carbon dioxide equivalent
DPM	Diesel particulate matter
GHG	Greenhouse gas
HFCs	Hydrofluorocarbons
LST	Localized Significant Thresholds
MTCO ₂ e	Metric tons of carbon dioxide equivalent
MMTCO ₂ e	Million metric tons of carbon dioxide equivalent
NAAQS	National Ambient Air Quality Standards
NOx	Nitrogen Oxides
NO ₂	Nitrogen dioxide
N ₂ O	Nitrous oxide
O ₃	Ozone
PFCs	Perfluorocarbons
PM	Particle matter
PM10	Particles that are less than 10 micrometers in diameter
PM2.5	Particles that are less than 2.5 micrometers in diameter
PMI	Point of maximum impact
PPM	Parts per million
PPB	Parts per billion
RTIP	Regional Transportation Improvement Plan
RTP	Regional Transportation Plan
SCAB	South Coast Air Basin
SCAQMD	South Coast Air Quality Management District
SF ₆	Sulfur hexafluoride
SIP	State Implementation Plan
SOx	Sulfur Oxides
SRA	Source/Receptor Area
TAC	Toxic air contaminants
VOC	Volatile organic compounds
WRCC	Western Regional Climate Center

1.0 Introduction

1.1 Purpose of Analysis and Study Objectives

This air quality and greenhouse gas (GHG) analysis was prepared to evaluate whether the estimated criteria pollutants and GHG emissions generated from the project would cause a significant impact to the air resources in the project area. This assessment was conducted within the context of the California Environmental Quality Act (CEQA, California Public Resources Code Sections 21000, et seq.). The assessment is consistent with the methodology and emission factors endorsed by South Coast Air Quality Management District (SCAQMD), California Air Resource Board (CARB), and the United States Environmental Protection Agency (US EPA).

1.2 Project Summary

1.2.1 Site Location

The project site is located at 31401 Riverside Drive in the City of Lake Elsinore, California, as shown in Exhibit A. Per the City of Lake Elsinore Lake View District Land Use Plan the site has a current land use classification of General Commercial. The proposed land use is commercial. Land uses surrounding the site include commercial uses and vacant land to the north, vacant land to the south, Riverside Drive to the east, and multi-family residential uses to the west (adjacent to the future development portion of the project site).

1.2.2 Project Description

The Project proposes to develop approximately 1.26-acres of an approximately 2.45-acre project site (remainder of site for future development) with a 5,436 square foot express car wash with 27 vacuum stations. Exhibit B demonstrates the site plan for the project.

Construction activities within the Project area will consist of demolition, site preparation, grading, building, paving, and architectural coating. Table 1 summarizes the land use description for the Project Site.

< Table 1, next page >

Land Use	Unit Amount	Size Metric		
Automobile Care Center ¹	5.436	TSF		
Other Asphalt Surfaces	0.930	Acre		
Other Non-Asphalt Surfaces	8.978	TSF		
TSF= thousand square foot				
¹ CalEEMod does not have a car wash land use available in its database; therefore, the proposed car wash was modeled as an Automobile Care Center (Institute of Transportation Engineers, Trip Generation Manual, 10th Edition, 2017, Land Use Code 942), as this is the closest land use to a car wash available.				

Table 1: Land Use Summary

1.2.3 Sensitive Receptors

Sensitive receptors are considered land uses or other types of population groups that are more sensitive to air pollution than others due to their exposure. Sensitive population groups include children, the elderly, the acutely and chronically ill, and those with cardio-respiratory diseases. For CEQA purposes, a sensitive receptor would be a location where a sensitive individual could remain for 24-hours or longer, such as residencies, hospitals, and schools (etc).

The closest existing sensitive receptors (to the site area) are the multi-family residential dwelling units located approximately 290 feet (~88 meters) west and 560 feet (~171 meters) southwest and the single-family residential uses located approximately 255 feet (~78 meters) northwest and 581 feet (~177 meters) northeast of the boundaries of the proposed development.

1.3 Executive Summary of Findings and Mitigation Measures

The following is a summary of the analysis results:

Construction-Source Emissions

Project construction-source emissions would not exceed applicable regional thresholds of significance established by the SCAQMD. For localized emissions, the project will not exceed applicable Localized Significance Thresholds (LSTs) established by the SCAQMD.

Project construction-source emissions would not conflict with the Basin Air Quality Management Plan (AQMP). As discussed herein, the project will comply with all applicable SCAQMD construction-source emission reduction rules and guidelines. Project construction source emissions would not cause or substantively contribute to violation of the California Ambient Air Quality Standards (CAAQS) or National Ambient Air Quality Standards (NAAQS).

Established requirements addressing construction equipment operations, and construction material use, storage, and disposal requirements act to minimize odor impacts that may result from

construction activities. Moreover, construction-source odor emissions would be temporary, shortterm, and intermittent in nature and would not result in persistent impacts that would affect substantial numbers of people. Potential construction-source odor impacts are therefore considered less-than-significant.

Operational-Source Emissions

The project operational-sourced emissions would not exceed applicable regional thresholds of significance established by the SCAQMD. Project operational-source emissions would not result in or cause a significant localized air quality impact as discussed in the Operations-Related Local Air Quality Impacts section of this report. Additionally, project-related traffic will not cause or result in CO concentrations exceeding applicable state and/or federal standards (CO "hotspots). Project operational-source emissions would therefore not adversely affect sensitive receptors within the vicinity of the project.

Project operational-source emissions would not conflict with the Basin Air Quality Management Plan (AQMP). The project's emissions meet SCAQMD regional thresholds and will not result in a significant cumulative impact. The project does not propose any such uses or activities that would result in potentially significant operational-source odor impacts. Potential operational-source odor impacts are therefore considered less-than significant.

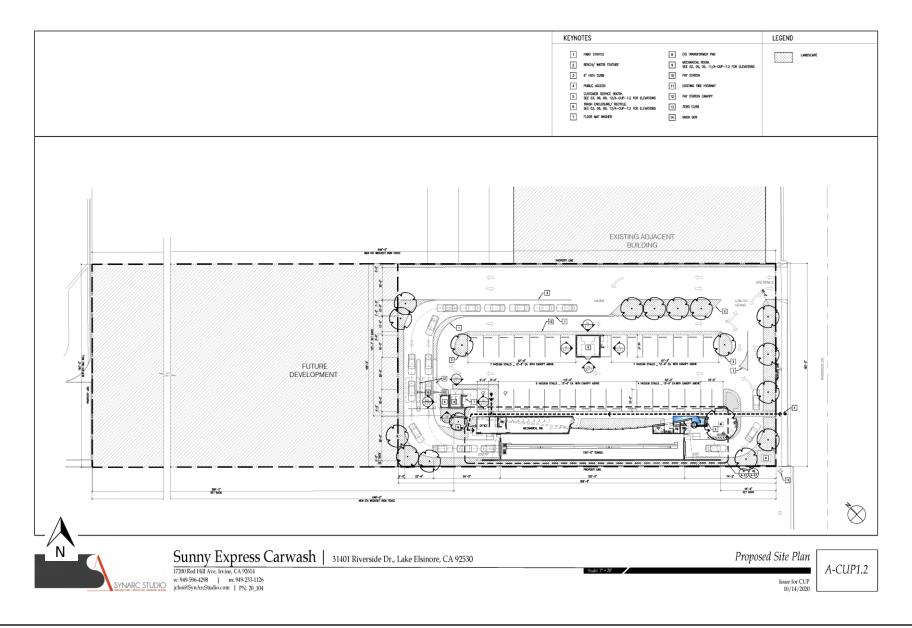
Project-related GHG emissions meet the SCAQMD draft screening threshold of 3,000 metric tons of carbon dioxide equivalents (MTCO2e) per year and are also considered to be less than significant. The project also complies with the goals of the City of Lake Elsinore Climate Action Plan, CARB Scoping Plan, AB-32, and SB-32.

Mitigation Measures

A. <u>Construction Measures</u>

Adherence to SCAQMD Rule 403 is required.

No construction mitigation required.


B. Operational Measures to Reduce Greenhouse Gas Emissions

No operational mitigation required.

Exhibit A Location Map

Exhibit B **Site Plan**

2.0 Regulatory Framework and Background

2.1 Air Quality Regulatory Setting

Air pollutants are regulated at the national, state, and air basin level; each agency has a different level of regulatory responsibility. The United States Environmental Protection Agency (EPA) regulates at the national level. The California Air Resources Board (ARB) regulates at the state level. The South Coast Air Quality Management District (SCAQMD) regulates at the air basin level.

2.1.1 National and State

The EPA is responsible for global, international, and interstate air pollution issues and policies. The EPA sets national vehicle and stationary source emission standards, oversees approval of all State Implementation Plans, provides research and guidance for air pollution programs, and sets National Air Quality Standards, also known as federal standards. There are six common air pollutants, called criteria pollutants, which were identified from the provisions of the Clean Air Act of 1970.

- Ozone
- Nitrogen Dioxide
- Lead
- Particulate Matter (PM10 and PM2.5)
- Carbon Monoxide
- Particulate Matter
- Sulfur Dioxide

The federal standards were set to protect public health, including that of sensitive individuals; thus, the standards continue to change as more medical research is available regarding the health effects of the criteria pollutants. Primary federal standards are the levels of air quality necessary, with an adequate margin of safety, to project the public health.

A State Implementation Plan is a document prepared by each state describing existing air quality conditions and measures that will be followed to attain and maintain federal standards. The State Implementation Plan for the State of California is administered by the ARB, which has overall responsibility for statewide air quality maintenance and air pollution prevention. California's State Implementation Plan incorporates individual federal attainment plans for regional air districts—air district prepares their federal attainment plan, which sent to ARB to be approved and incorporated into the California State Implementation Plan. Federal attainment plans include the technical foundation for understanding air quality (e.g., emission inventories and air quality monitoring), control measures and strategies, and enforcement mechanisms. See http://www.arb.ca.gov/research/aags/aags.htm for additional information on criteria pollutants and air quality standards.

The federal and state ambient air quality standards are summarized in Table 2 and can also be found at <u>http://www.arb.ca.gov/research/aaqs/aaqs2.pdf</u>.

Pollutant	Averaging Time California St		itandards ¹	National Standards ²		
Pollutant	Averaging Time	Concentrations ³	Method ^₄	Primary ^{3,5}	Secondary ^{3,6}	Method ⁷
Ozone (O3)	1-Hour	0.09 ppm	Ultraviolet		Same as Primary	Ultraviolet
020110 (03)	8-Hour	0.070 ppm	Photometry	0.070 ppm (147 μg/m ³)	Standard	Photometry
Respirable	24-Hour	50 μg/m³	Gravimetric or Beta	150 μ/m³	Same as Primary	Inertial Separation
Particulate Matter (PM10) ⁸	Annual Arithmetic Mean	20 µg/m³	Attenuation		Standard	and Gravimetric Analysis
Fine Particulate	24-Hour			35 μg/m³	Same as Primary Standard	Inertial Separation and Gravimetric
Matter (PM2.5) ⁸	Annual Arithmetic Mean	12 μg/m³	Gravimetric or Beta Attenuation	12 μg/m³	15 μg/m³	Analysis
	1-Hour	20 ppm (23 μg/m³)	Non-Dispersive	35 ppm (40 μg/m ³)		Non-Dispersive
Carbon Monoxide	8-Hour	9.0 ppm (10 μg/m ³)	Infrared Photometry	9 ppm (10 μg/m ³)		Infrared
(CO)	8-Hour (Lake Tahoe)	6 ppm (7 μg/m³)	(NDIR)			Photometry (NDIR)
Nitragan Diavida	1-Hour	0.18 ppm (339 μg/m³)	Gas Phase Chemiluminescence	100 ppb (188 μg/m ³)		Gas Phase Chemiluminescence
Nitrogen Dioxide (NO ₂) ⁹	Annual Arithmetic Mean	0.030 ppm (357 μg/m³)		0.053 ppm (100 μg/m³)	Same as Primary Standard	
	1-Hour	0.25 ppm (655 μg/m ³)	Ultraviolet Fluorescence	75 ppb (196 μg/m³)		Ultraviolet Fluorescence;
	3-Hour				0.5 ppm (1300 mg/m ³)	
Sulfur Dioxide (SO ₂) ¹⁰	24-Hour	0.04 ppm (105 μg/m³)		0.14 ppm (for certain areas) ¹⁰		Spectrophotometry (Pararosaniline
	Annual Arithmetic Mean			0.130ppm (for certain areas) ¹⁰		Method)
	30 Day Average	1.5 μg/m³				
Lead ^{11,12}	Calendar Qrtr		Atomic Absorption	1.5 μg/m³ (for certain areas) ¹²	Same as Primary	High Volume Sampler and Atomic Absorption
	Rolling 3-Month Average			0.15 μg/m ³	Standard	
Visibility Reducing			Beta Attenuation and			
Particles ¹³	8-Hour	See footnote 13	Transmittance through Filter Tape		No	
Sulfates	24-Hour	25 μg/m³	Ion Chromatography	National Standards		
Hydrogen Sulfide	1-Hour	0.03 ppm (42 μg/m ³)	Ultraviolet Fluorescence			
Vinyl Chloride ¹¹	24-Hour	0.01 ppm (26 μg/m ³)	Gas Chromatography			

Table 2: Ambient Air Quality Standards

Notes:

1. California standards for ozone, carbon monoxide (except 8-hour Lake Tahoe), sulfur dioxide (1 and 24 hour), nitrogen dioxide, and particulate matter (PM10, PM2.5, and visibility reducing particles), are values that are not to be exceeded. All others are not to be equaled or exceeded. California ambient air quality standards are listed in the Table of Standards in Section 70200 of Title 17 of the California Code of Regulations.

- 2. National standards (other than ozone, particulate matter, and those based on annual arithmetic mean) are not to be exceeded more than once a year. The ozone standard is attained when the fourth highest 8-hour concentration measured at each site in a year, averaged over three years, is equal to or less than the standard. For PM10, the 24 hour standard is attained when the expected number of days per calendar year with a 24-hour average concentration above 150 µg/m³ is equal to or less than one. For PM2.5, the 24 hour standard is attained when 98 percent of the daily concentrations, averaged over three years, are equal to or less than the standard. Contact the U.S. EPA for further clarification and current national policies.
- 3. Concentration expressed first in units in which it was promulgated. Equivalent units given in parentheses are based upon a reference temperature of 25°C and a reference pressure of 760 torr. Most measurements of air quality are to be corrected to a reference temperature of 25°C and a reference pressure of 760 torr; ppm in this table refers to ppm by volume, or micromoles of pollutant per mole of gas.
- 4. Any equivalent measurement method which can be shown to the satisfaction of the ARB to give equivalent results at or near the level of the air quality standard may be used.
- 5. National Primary Standards: The levels of air quality necessary, with an adequate margin of safety to protect the public health.
- 6. National Secondary Standards: The levels of air quality necessary to protect the public welfare from any known or anticipated adverse effects of a pollutant.
- 7. Reference method as described by the U.S. EPA. An "equivalent method" of measurement may be used but must have a "consistent relationship to the reference method" and must be approved by the U.S. EPA.

- 8. On December 14, 2012, the national annual PM2.5 primary standard was lowered from 15 μg/m³ to 12.0 μg/m³. The existing national 24-hour PM2.5 standards (primary and secondary) were retained at 35 μg/m³, as was the annual secondary standard of 15 μg/m³. The existing 24-hour PM10 standards (primary and secondary) of 150 μg/m³ also were retained. The form of the annual primary and secondary standards is the annual mean, averaged over 3 years.
- 9. To attain the 1-hour national standard, the 3-year average of the annual 98th percentile of the 1-hour daily maximum concentrations at each site must not exceed 100 ppb. Note that the national 1-hour standard is in units of parts per billion (ppb). California standards are in units of parts per million (ppm). To directly compare the national 1-hour standard to the California standards the units can be converted from ppb to ppm. In this case, the national standard of 100 ppb is identical to 0.100 ppm.
- 10. On June 2, 2010, a new 1-hour SO2 standard was established and the existing 24-hour and annual primary standards were revoked. To attain the 1-hour national standard, the 3-year average of the annual 99th percentile of the 1-hour daily maximum concentrations at each site must not exceed 75 ppb. The 1971 SO2 national standards (24-hour and annual) remain in effect until one year after an area is designated for the 2010 standard, except that in areas designated nonattainment for the 1971 standards, the 1971 standards remain in effect until implementation plans to attain or maintain the 2010 standards are approved.

Note that the 1-hour national standard is in units of parts per billion (ppb). California standards are in units of parts per million (ppm). To directly compare the 1-hour national standard to the California standard the units can be converted to ppm. In this case, the national standard of 75 ppb is identical to 0.075 ppm.

- 11. The ARB has identified lead and vinyl chloride as 'toxic air contaminants' with no threshold level of exposure for adverse health effects determined. These actions allow for the implementation of control measures at levels below the ambient concentrations specified for these pollutants.
- 12. The national standard for lead was revised on October 15, 2008 to a rolling 3-month average. The 1978 lead standard (1.5 μg/m³ as a quarterly average) remains in effect until one year after an area is designated for the 2008 standard, except that in areas designated nonattainment for the 1978 standard, the 1978 standard remains in effect until implementation plans to attain or maintain the 2008 standard are approved.
- 13. In 1989, the ARB converted both the general statewide 10-mile visibility standard and the Lake Tahoe 30-mile visibility standard to instrumental equivalents, which are "extinction of 0.23 per kilometer" and "extinction of 0.07 per kilometer" for the statewide and Lake Tahoe Air Basin standards, respectively.

Several pollutants listed in Table 2 are not addressed in this analysis. Analysis of lead is not included in this report because the project is not anticipated to emit lead. Visibility-reducing particles are not explicitly addressed in this analysis because particulate matter is addressed. The project is not expected to generate or be exposed to vinyl chloride because proposed project uses do not utilize the chemical processes that create this pollutant and there are no such uses in the project vicinity. The proposed project is not expected to cause exposure to hydrogen sulfide because it would not generate hydrogen sulfide in any substantial quantity.

2.1.2 South Coast Air Quality Management District

The agency for air pollution control for the South Coast Air Basin (basin) is the South Coast Air Quality Management District (SCAQMD). SCAQMD is responsible for controlling emissions primarily from stationary sources. SCAQMD maintains air quality monitoring stations throughout the basin. SCAQMD, in coordination with the Southern California Association of Governments, is also responsible for developing, updating, and implementing the Air Quality Management Plan (AQMP) for the basin. An AQMP is a plan prepared and implemented by an air pollution district for a county or region designated as nonattainment of the federal and/or California ambient air quality standards. The term nonattainment area is used to refer to an air basin where one or more ambient air quality standards are exceeded.

Every three (3) years the SCAQMD prepares a new AQMP, updating the previous plan and having a 20-year horizon.

On March 23, 2017 CARB approved the 2016 AQMP. The 2016 AQMP is a regional blueprint for achieving the federal air quality standards and healthful air.

The 2016 AQMP includes both stationary and mobile source strategies to ensure that rapidly approaching attainment deadlines are met, that public health is protected to the maximum extent feasible, and that the region is not faced with burdensome sanctions if the Plan is not approved or if the NAAQS are not met on time. As with every AQMP, a comprehensive analysis of emissions, meteorology, atmospheric chemistry, regional growth projections, and the impact of existing control measures is updated with the latest data and methods. The most significant air quality challenge in the Basin is to reduce nitrogen oxide (NOx) emissions sufficiently to meet the upcoming ozone standard deadlines. The primary goal of this Air Quality Management Plan is to meet clean air standards and protect public health, including ensuring benefits to environmental justice and disadvantaged communities. Now that the plan has been approved by CARB, it has been forwarded to the U.S. Environmental Protection Agency for its review. If approved by EPA, the plan becomes federally enforceable

The 2012 AQMP built upon the approaches taken in the 2007 AQMP for the attainment of federal PM and ozone standards, and highlights the significant amount of reductions needed and the need to engage in interagency coordinated planning of mobile sources to meet all of the federal criteria pollutant standards. Compared with the 2007 AQMP, the 2012 AQMP utilized revised emissions inventory projections that use 2008 as the base year. On-road emissions are calculated using CARB EMFAC2011 emission factors and the transportation activity data provided by SCAG from their 2012 Regional Transportation Plan (2012 RTP). Off-road emissions were updated using CARB's 2011 In-Use Off-Road Fleet Inventory Model. Since the 2007 AQMP was finalized new area source categories such as liquid propane gas (LPG) transmission losses, storage tank and pipeline cleaning and degassing, and architectural colorants, were created and included in the emissions inventories. The 2012 AQMP also includes analysis of several additional sources of GHG emissions such as landfills and could also assist in reaching the GHG target goals in the AB32 Scoping Plan.

South Coast Air Quality Management District Rules

The AQMP for the basin establishes a program of rules and regulations administered by SCAQMD to obtain attainment of the state and federal standards. Some of the rules and regulations that apply to this Project include, but are not limited to, the following:

SCAQMD Rule 402 prohibits a person from discharging from any source whatsoever such quantities of air contaminants or other material which cause injury, detriment, nuisance, or annoyance to any considerable number of persons or to the public, or which endanger the comfort, repose, health or safety of any such persons or the public, or which cause, or have a natural tendency to cause, injury or damage to business or property.

SCAQMD Rule 403 governs emissions of fugitive dust during construction and operation activities. Compliance with this rule is achieved through application of standard Best Management Practices, such as application of water or chemical stabilizers to disturbed soils, covering haul vehicles, restricting vehicle speeds on unpaved roads to 15 miles per hour, sweeping loose dirt from paved site access roadways, cessation of construction activity when winds exceed 25 mph, and establishing a permanent ground cover on finished sites.

Rule 403 requires that fugitive dust be controlled with best available control measures so that the presence of such dust does not remain visible in the atmosphere beyond the property line of the emission source. In addition, Rule 403 requires implementation of dust suppression techniques to prevent fugitive dust from creating a nuisance off site. Applicable suppression techniques are indicated below and include but are not limited to the following:

- Apply nontoxic chemical soil stabilizers according to manufacturers' specifications to all inactive construction areas (previously graded areas in active for 10 days or more).
- Water active sites at least three times daily.
- Cover all trucks hauling dirt, san, soil, or other loose materials, or maintain at least 2 feet of freeboard in accordance with the requirements of California Vehicle Code (CVC) section 23114.
- Pave construction access roads at least 100 feet onto the site from the main road.
- Reduce traffic speeds on all unpaved roads to 15 mph or less.
- Suspension of all grading activities when wind speeds (including instantaneous wind gusts) exceed 25 mph.
- Bumper strips or similar best management practices shall be provided where vehicles enter and exit the construction site onto paved roads or wash off trucks and any equipment leaving the site each trip.
- Replanting disturbed areas as soon as practical.
- During all construction activities, construction contractors shall sweep on-site and off-iste streets if silt is carried to adjacent public thoroughfares, to reduce the amount of particulate matter on public streets.

SCAQMD Rule 1113 governs the sale, use, and manufacturing of architectural coating and limits the VOC content in paints and paint solvents. This rule regulates the VOC content of paints available during construction. Therefore, all paints and solvents used during construction and operation of project must comply with Rule 1113.

Idling Diesel Vehicle Trucks – Idling for more than 5 minutes in any one location is prohibited within California borders.

Rule 2702. The SCAQMD adopted Rule 2702 on February 6, 2009, which establishes a voluntary air quality investment program from which SCAQMD can collect funds from parties that desire certified GHG emission reductions, pool those funds, and use them to purchase or fund GHG emission reduction projects within two years, unless extended by the Governing Board. Priority will be given to projects that result in co-benefit emission reductions of GHG emissions and criteria or toxic air pollutants within environmental justice areas. Further, this voluntary program may compete with the cap-and-trade program identified for implementation in CARB's Scoping Plan, or a Federal cap and trade program.

2.1.3 Local

Local jurisdictions, such as the City of Lake Elsinore, have the authority and responsibility to reduce air pollution through their police power and decision-making authority. Specifically, the City is responsible for the assessment and mitigation of air emissions resulting from its land use decisions. The City is also responsible for the implementation of transportation control measures as outlined in the 2016 AQMP. Examples of such measures include bus turnouts, energy-efficient streetlights, and synchronized traffic signals. In accordance with CEQA requirements and the CEQA review process, the City assesses the air quality impacts of new development projects, requires mitigation of potentially significant air quality impacts by conditioning discretionary permits, and monitors and enforces implementation of such mitigation.

The City relies on the expertise of the SCAQMD and utilizes the SCAQMD CEQA Air Quality Handbook as the guidance document for the environmental review of plans and development proposals within its jurisdiction.

City of Lake Elsinore General Plan

The City of Lake Elsinore adopted their General Plan in December 2011. The Public Safety and Welfare Element in the General Plan, contains the following air quality-related goals and policies that are applicable to the proposed project:

- **Goal 1** Continue to coordinate with the Air Quality Management District and the City's Building Department to reduce the amount of fugitive dust that is emitted into the atmosphere from unpaved areas, parking lots, and construction sites.
- *Policy 1.1* Continue to implement requirements identified in the National Pollutant Discharge Elimination System (NPDES).
- **Goal 2** Work with regional and state governments to develop effective mitigation measures to improve air quality.
- *Policy 2.1* Support the SCAQMD in its development of improved ambient air quality monitoring capabilities and establishment of standards, thresholds, and rules to address, and where necessary mitigate, the air quality impacts of new development.
- *Policy 2.2* Support programs that educate the public about regional air quality issues, opportunities and solutions.
- *Policy 2.3* Evaluate the purchase of alternative fuel vehicles for official City vehicles.

2.2 Greenhouse Gas Regulatory Setting

2.2.1 International

Many countries around the globe have made an effort to reduce GHGs since climate change is a global issue.

Intergovernmental Panel on Climate Change. In 1988, the United Nations and the World Meteorological Organization established the Intergovernmental Panel on Climate Change to assess the scientific, technical and socio-economic information relevant to understanding the scientific basis of risk of human-induced climate change, its potential impacts, and options for adaptation and mitigation.

United Nations. The United States participates in the United Nations Framework Convention on Climate Change (UNFCCC) (signed on March 21, 1994). Under the Convention, governments gather and share information on greenhouse gas emissions, national policies, and best practices; launch national strategies for addressing greenhouse gas emissions and adapting to expected impacts, including the provision of financial and technological support to developing countries; and cooperate in preparing for adaptation to the impacts of climate change.

The 2014 UN Climate Change Conference in Lima Peru provided a unique opportunity to engage all countries to assess how developed countries are implementing actions to reduce emissions.

Kyoto Protocol. The Kyoto Protocol is a treaty made under the UNFCCC and was the first international agreement to regulate GHG emissions. It has been estimated that if the commitments outlined in the Kyoto Protocol are met, global GHG emissions could be reduced by an estimated 5 percent from 1990 levels during the first commitment period of 2008 – 2012 (UNFCCC 1997). On December 8, 2012, the Doha Amendment to the Kyoto Protocol was adopted. The amendment includes: New commitments for Annex I Parties to the Kyoto Protocol who agreed to take on commitments in a second commitment period from 2013 – 2020; a revised list of greenhouse gases (GHG) to be reported on by Parties in the second commitment period; and Amendments to several articles of the Kyoto Protocol which specifically referenced issues pertaining to the first commitment period and which needed to be updated for the second commitment period.

2.2.2 National

Greenhouse Gas Endangerment. On December 2, 2009, the EPA announced that GHGs threaten the public health and welfare of the American people. The EPA also states that GHG emissions from onroad vehicles contribute to that threat. The decision was based on *Massachusetts v. EPA* (Supreme Court Case 05-1120) which argued that GHGs are air pollutants covered by the Clean Air Act and that the EPA has authority to regulate those emissions.

Clean Vehicles. Congress first passed the Corporate Average Fuel Economy law in 1975 to increase the fuel economy of cars and light duty trucks. The law has become more stringent over time. On May 19, 2009, President Obama put in motion a new national policy to increase fuel economy for all new cars and trucks sold in the United States. On April 1, 2010, the EPA and the Department of Transportation's

National Highway Safety Administration announced a joint final rule establishing a national program that would reduce greenhouse gas emissions and improve fuel economy for new cars and trucks sold in the United States.

The first phase of the national program would apply to passenger cars, light-duty trucks, and mediumduty passenger vehicles, covering model years 2012 through 2016. They require these vehicles to meet an estimated combined average emissions level of 250 grams of carbon dioxide per mile, equivalent to 35.5 miles per gallon if the automobile industry were to meet this carbon dioxide level solely through fuel economy improvements. Together, these standards would cut carbon dioxide emissions by an estimated 960 million metric tons and 1.8 billion barrels of oil over the lifetime of the vehicles sold under the program (model years 2012-2016). The second phase of the national program would involve proposing new fuel economy and greenhouse gas standards for model years 2017 – 2025 by September 1, 2011.

On October 25, 2010, the EPA and the U.S. Department of Transportation proposed the first national standards to reduce greenhouse gas emissions and improve fuel efficiency of heavy-duty trucks and buses. For combination tractors, the agencies are proposing engine and vehicle standards that begin in the 2014 model year and achieve up to a 20 percent reduction in carbon dioxide emissions and fuel consumption by the 2018 model year. For heavy-duty pickup trucks and vans, the agencies are proposing separate gasoline and diesel truck standards, which phase in starting in the 2014 model year and achieve up to a 10 percent reduction for gasoline vehicles and 15 percent reduction for diesel vehicles by 2018 model year (12 and 17 percent respectively if accounting for air conditioning leakage). Lastly, for vocational vehicles, the agencies are proposing engine and vehicle standards starting in the 2014 model year which would achieve up to a 10 percent reduction in fuel consumption and carbon dioxide emissions by 2018 model year.

Mandatory Reporting of Greenhouse Gases. On January 1, 2010, the EPA started requiring large emitters of heat-trapping emissions to begin collecting GHG data under a new reporting system. Under the rule, suppliers of fossil fuels or industrial greenhouse gases, manufacturers of vehicles and engines, and facilities that emit 25,000 metric tons or more per year of greenhouse gas emissions are required to submit annual reports to the EPA.

Climate Adaption Plan. The EPA Plan identifies priority actions the Agency will take to incorporate considerations of climate change into its programs, policies, rules and operations to ensure they are effective under future climatic conditions. The following link provides more information on the EPA Plan: <u>https://www.epa.gov/arc-x/planning-climate-change-adaptation</u>

2.2.3 California

California Code of Regulations (CCR) Title 24, Part 6. CCR Title 24, Part 6: California's Energy Efficiency Standards for Residential and Nonresidential Buildings (Title 24) were first established in 1978 in response to a legislative mandate to reduce California's energy consumption. The standards are updated periodically to allow consideration and possible incorporation of new energy efficiency technologies and methods. Although it was not originally intended to reduce GHG emissions,

electricity production by fossil fuels results in GHG emissions and energy efficient buildings require less electricity. Therefore, increased energy efficiency results in decreased GHG emissions.

The Energy Commission adopted 2008 Standards on April 23, 2008 and Building Standards Commission approved them for publication on September 11, 2008. These updates became effective on August 1, 2009. 2013 and 2016 standards have been approved and became effective July 1, 2014 and January 1, 2016, respectively.

California Code of Regulations (CCR) Title 24, Part 11. All buildings for which an application for a building permit is submitted on or after January 1, 2020 must follow the 2019 standards. Energy efficient buildings require less electricity; therefore, increased energy efficiency reduces fossil fuel consumption and decreases greenhouse gas emissions. The following links provide more information on Title 24, Part 11:

https://www.dgs.ca.gov/BSC/Codes https://www.energy.ca.gov/sites/default/files/2020-03/Title_24_2019_Building_Standards_FAQ_ada.pdf

California Green Building Standards On January 12, 2010, the State Building Standards Commission unanimously adopted updates to the California Green Building Standards Code, which went into effect on January 1, 2011. The Housing and Community Development (HCD) updated CALGreen through the 2015 Triennial Code Adoption Cycle, during the 2016 to 2017 fiscal year. During the 2019-2020 fiscal year, the Department of Housing and Community Development (HCD) updated CALGreen through the 2019 Triennial Code Adoption Cycle.

The Code is a comprehensive and uniform regulatory code for all residential, commercial and school buildings. CCR Title 24, Part 11: California Green Building Standards (Title 24) became effective in 2001 in response to continued efforts to reduce GHG emissions associated with energy consumption. CCR Title 24, Part 11 now require that new buildings reduce water consumption, employ building commissioning to increase building system efficiencies, divert construction waste from landfills, and install low pollutant-emitting finish materials. One focus of CCR Title 24, Part 11 is water conservation measures, which reduce GHG emissions by reducing electrical consumption associated with pumping and treating water. CCR Title 24, Part 11 has approximately 52 nonresidential mandatory measures and an additional 130 provisions for optional use. Some key mandatory measures for commercial occupancies include specified parking for clean air vehicles, a 20 percent reduction of potable water use within buildings, a 50 percent construction waste diversion from landfills, use of building finish materials that emit low levels of volatile organic compounds, and commissioning for new, nonresidential buildings over 10,000 square feet.

The 2019 CalGreen Code includes the following changes and/or additional regulations:

Single-family homes built with the 2019 standards will use about 7 percent less energy due to energy efficiency measures versus those built under the 2016 standards. Once rooftop solar electricity generation is factored in, homes built under the 2019 standards will use about 53 percent less energy than those under the 2016 standards. Nonresidential buildings will use about 30 percent less energy due mainly to lighting upgrades¹.

HCD modified the best management practices for stormwater pollution prevention adding Section 5.106.2 for projects that disturb one or more acres of land. This section requires projects that disturb one acre or more of land or less than one acre of land but are part of a larger common plan of development or sale must comply with the post-construction requirement detailed in the applicable National Pollutant Discharge Elimination System (NPDES) General Permit for Stormwater Discharges Associated with Construction and Land Disturbance Activities issued by the State Water Resources Control Board. The NPDES permits require post-construction runoff (post-project hydrology) to match the preconstruction runoff pre-project hydrology) with installation of post-construction stormwater management measures.

HCD added sections 5.106.4.1.3 and 5.106.4.1.5 in regards to bicycle parking. Section 5.106.4.1.3 requires new buildings with tenant spaces that have 10 or more tenant-occupants, provide secure bicycle parking for 5 percent of the tenant-occupant vehicular parking spaces with a minimum of one bicycle parking facility. In addition, Section 5.106.4.1.5 states that acceptable bicycle parking facility for Sections 5.106.4.1.2 through 5.106.4.1.4 shall be convenient from the street and shall meeting one of the following: (1) covered, lockable enclosures with permanently anchored racks for bicycles; (2) lockable bicycle rooms with permanently anchored racks; or (3) lockable, permanently anchored bicycle lockers.

HCD amended section 5.106.5.3.5 allowing future charging spaces to qualify as designated parking for clean air vehicles.

HCD updated section 5.303.3.3 in regards to showerhead flow rates. This update reduced the flow rate to 1.8 GPM.

HCD amended section 5.304.1 for outdoor potable water use in landscape areas and repealed sections 5.304.2 and 5.304.3. The update requires nonresidential developments to comply with a local water efficient landscape ordinance or the current California Department of Water Resource's' Model Water Efficient Landscape Ordinance (MWELO), whichever is more stringent. Some updates were also made in regards to the outdoor potable water use in landscape areas for public schools and community colleges.

¹ https://ww2.energy.ca.gov/title24/2019standards/documents/2018_Title_24_2019_Building_Standards_FAQ.pdf

HCD updated Section 5.504.5.3 in regards to the use of MERV filters in mechanically ventilated buildings. This update changed the filter use from MERV 8 to MERV 13.

The California Green Building Standards Code does not prevent a local jurisdiction from adopting a more stringent code as state law provides methods for local enhancements. The Code recognizes that many jurisdictions have developed existing construction and demolition ordinances, and defers to them as the ruling guidance provided they provide a minimum 50-percent diversion requirement. The code also provides exemptions for areas not served by construction and demolition recycling infrastructure. State building code provides the minimum standard that buildings need to meet in order to be certified for occupancy. Enforcement is generally through the local building official. The following link provides more on CalGreen Building Standards:

http://www.bsc.ca.gov/Home/CALGreen.aspx

Executive Order S-3-05. California Governor issued Executive Order S-3-05, GHG Emission, in June 2005, which established the following targets:

- By 2010, California shall reduce greenhouse gas emissions to 2000 levels;
- By 2020, California shall reduce greenhouse gas emissions to 1990 levels.
- By 2050, California shall reduce greenhouse gas emissions to 80 percent below 1990 levels.

The executive order directed the secretary of the California Environmental Protection Agency (CalEPA) to coordinate a multi-agency effort to reduce GHG emissions to the target levels. To comply with the Executive Order, the secretary of CalEPA created the California Climate Action Team (CAT), made up of members from various state agencies and commissions. The team released its first report in March 2006. The report proposed to achieve the targets by building on the voluntary actions of businesses, local governments, and communities and through State incentive and regulatory programs.

Executive Order S-01-07. Executive Order S-1-07 was issued in 2007 and proclaims that the transportation sector is the main source of GHG emissions in the State, since it generates more than 40 percent of the State's GHG emissions. It establishes a goal to reduce the carbon intensity of transportation fuels sold in the State by at least ten percent by 2020. This Order also directs CARB to determine whether this Low Carbon Fuel Standard (LCFS) could be adopted as a discrete early-action measure as part of the effort to meet the mandates in AB 32.

On April 23, 2009 CARB approved the proposed regulation to implement the low carbon fuel standard. The low carbon fuel standard is anticipated to reduce GHG emissions by about 16 MMT per year by 2020. The low carbon fuel standard is designed to provide a framework that uses market mechanisms to spur the steady introduction of lower carbon fuels. The framework establishes performance standards that fuel producers and importers must meet each year beginning in 2011. Separate standards are established for gasoline and diesel fuels and the alternative fuels that can replace each. The standards are "back-loaded", with more reductions required in the last five years, than the first five years. This schedule allows for the development of advanced fuels that are lower in carbon than today's fuels and the market penetration of plug-in hybrid electric vehicles, battery electric vehicles,

fuel cell vehicles, and flexible fuel vehicles. It is anticipated that compliance with the low carbon fuel standard will be based on a combination of both lower carbon fuels and more efficient vehicles.

Reformulated gasoline mixed with corn-derived ethanol at ten percent by volume and low sulfur diesel fuel represent the baseline fuels. Lower carbon fuels may be ethanol, biodiesel, renewable diesel, or blends of these fuels with gasoline or diesel as appropriate. Compressed natural gas and liquefied natural gas also may be low carbon fuels. Hydrogen and electricity, when used in fuel cells or electric vehicles are also considered as low carbon fuels for the low carbon fuel standard.

SB 97. Senate Bill 97 (SB 97) was adopted August 2007 and acknowledges that climate change is a prominent environmental issue that requires analysis under CEQA. SB 97 directed the Governor's Office of Planning and Research (OPR), which is part of the State Resource Agency, to prepare, develop, and transmit to CARB guidelines for the feasible mitigation of GHG emissions or the effects of GHG emissions, as required by CEQA, by July 1, 2009. The Resources Agency was required to certify and adopt those guidelines by January 1, 2010.

Pursuant to the requirements of SB 97 as stated above, on December 30, 2009 the Natural Resources Agency adopted amendments to the state CEQA guidelines that address GHG emissions. The CEQA Guidelines Amendments changed 14 sections of the CEQA Guidelines and incorporate GHG language throughout the Guidelines. However, no GHG emissions thresholds of significance are provided and no specific mitigation measures are identified. The GHG emission reduction amendments went into effect on March 18, 2010 and are summarized below:

- Climate action plans and other greenhouse gas reduction plans can be used to determine whether a project has significant impacts, based upon its compliance with the plan.
- Local governments are encouraged to quantify the greenhouse gas emissions of proposed projects, noting that they have the freedom to select the models and methodologies that best meet their needs and circumstances. The section also recommends consideration of several qualitative factors that may be used in the determination of significance, such as the extent to which the given project complies with state, regional, or local GHG reduction plans and policies. OPR does not set or dictate specific thresholds of significance. Consistent with existing CEQA Guidelines, OPR encourages local governments to develop and publish their own thresholds of significance for GHG impacts assessment.
- When creating their own thresholds of significance, local governments may consider the thresholds of significance adopted or recommended by other public agencies, or recommended by experts.
- New amendments include guidelines for determining methods to mitigate the effects of greenhouse gas emissions in Appendix F of the CEQA Guidelines.
- OPR is clear to state that "to qualify as mitigation, specific measures from an existing plan must be identified and incorporated into the project; general compliance with a plan, by itself, is not mitigation."
- OPR's emphasizes the advantages of analyzing GHG impacts on an institutional, programmatic level. OPR therefore approves tiering of environmental analyses and highlights some benefits of such an approach.

• Environmental impact reports (EIRs) must specifically consider a project's energy use and energy efficiency potential.

AB 32. The California State Legislature enacted AB 32, the California Global Warming Solutions Act of 2006. AB 32 requires that greenhouse gases emitted in California be reduced to 1990 levels by the year 2020. "Greenhouse gases" as defined under AB 32 include carbon dioxide, methane, nitrous oxide, hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride. ARB is the state agency charged with monitoring and regulating sources of greenhouse gases. AB 32 states the following:

Global warming poses a serious threat to the economic well-being, public health, natural resources, and the environment of California. The potential adverse impacts of global warming include the exacerbation of air quality problems, a reduction in the quality and supply of water to the state from the Sierra snowpack, a rise in sea levels resulting in the displacement of thousands of coastal businesses and residences, damage to marine ecosystems and the natural environment, and an increase in the incidences of infectious diseases, asthma, and other human health-related problems.

The ARB Board approved the 1990 greenhouse gas emissions level of 427 million metric tons of carbon dioxide equivalent (MMTCO2e) on December 6, 2007 (California Air Resources Board 2007). Therefore, emissions generated in California in 2020 are required to be equal to or less than 427 MMTCO2e. Emissions in 2020 in a "business as usual" scenario are estimated to be 596 MMTCO2e.

Under AB 32, the ARB published its Final Expanded List of Early Action Measures to Reduce Greenhouse Gas Emissions in California. Discrete early action measures are currently underway or are enforceable by January 1, 2010. The ARB has 44 early action measures that apply to the transportation, commercial, forestry, agriculture, cement, oil and gas, fire suppression, fuels, education, energy efficiency, electricity, and waste sectors. Of these early action measures, nine are considered discrete early action measures, as they are regulatory and enforceable by January 1, 2010. The ARB estimates that the 44 recommendations are expected to result in reductions of at least 42 MMTCO2e by 2020, representing approximately 25 percent of the 2020 target.

The ARB's Climate Change Scoping Plan (Scoping Plan) contains measures designed to reduce the State's emissions to 1990 levels by the year 2020 (California Air Resources Board 2008). The Scoping Plan identifies recommended measures for multiple greenhouse gas emission sectors and the associated emission reductions needed to achieve the year 2020 emissions target—each sector has a different emission reduction target. Most of the measures target the transportation and electricity sectors. As stated in the Scoping Plan, the key elements of the strategy for achieving the 2020 greenhouse gas target include:

- Expanding and strengthening existing energy efficiency programs as well as building and appliance standards;
- Achieving a statewide renewables energy mix of 33 percent;
- Developing a California cap-and-trade program that links with other Western Climate Initiative partner programs to create a regional market system;

- Establishing targets for transportation-related greenhouse gas emissions for regions throughout California and pursuing policies and incentives to achieve those targets;
- Adopting and implementing measures pursuant to existing State laws and policies, Including California's clean car standards, goods movement measures, and the Low Carbon Fuel Standard; and
- Creating targeted fees, including a public goods charge on water use, fees on high global warming potential gases, and a fee to fund the administrative costs of the State's long-term commitment to AB 32 implementation.

In addition, the Scoping Plan differentiates between "capped" and "uncapped" strategies. "Capped" strategies are subject to the proposed cap-and-trade program. The Scoping Plan states that the inclusion of these emissions within the cap-and trade program will help ensure that the year 2020 emission targets are met despite some degree of uncertainty in the emission reduction estimates for any individual measure. Implementation of the capped strategies is calculated to achieve a sufficient amount of reductions by 2020 to achieve the emission target contained in AB 32. "Uncapped" strategies that will not be subject to the cap-and-trade emissions caps and requirements are provided as a margin of safety by accounting for additional greenhouse gas emission reductions.⁴

Senate Bill 100. Senate Bill 100 (SB 100) requires 100 percent of total retail sales of electricity in California to come from eligible renewable energy resources and zero-carbon resources by December 31, 2045. SB 100 was adopted September 2018.

The interim thresholds from prior Senate Bills and Executive Orders would also remain in effect. These include Senate Bill 1078 (SB 1078), which requires retail sellers of electricity, including investor-owned utilities and community choice aggregators, to provide at least 20 percent of their supply from renewable sources by 2017. Senate Bill 107 (SB 107) which changed the target date to 2010. Executive Order S-14-08, which was signed on November 2008 and expanded the State's Renewable Energy Standard to 33 percent renewable energy by 2020. Executive Order S-21-09 directed the CARB to adopt regulations by July 31, 2010 to enforce S-14-08. Senate Bill X1-2 codifies the 33 percent renewable energy requirement by 2020.

SB 375. Senate Bill 375 (SB 375) was adopted September 2008 and aligns regional transportation planning efforts, regional GHG emission reduction targets, and land use and housing allocation. SB 375 requires Metropolitan Planning Organizations (MPO) to adopt a sustainable communities strategy (SCS) or alternate planning strategy (APS) that will prescribe land use allocation in that MPOs Regional Transportation Plan (RTP). CARB, in consultation with each MPO, will provide each affected region with reduction targets for GHGs emitted by passenger cars and light trucks in the region for the years 2020 and 2035. These reduction targets will be updated every eight years but can be updated every four years if advancements in emissions technologies affect the reduction strategies to achieve the targets. CARB is also charged with reviewing each MPO's sustainable communities strategy or alternate planning strategy for consistency with its assigned targets.

The proposed project is located within the Southern California Association of Governments (SCAG), which has authority to develop the SCS or APS. For the SCAG region, the targets set by CARB are at eight percent below 2005 per capita GHG emissions levels by 2020 and 13 percent below 2005 per capita GHG emissions levels by 2022, SCAG adopted the 2012-2035 Regional Transportation Plan / Sustainable Communities Strategy (RTP/SCS), which meets the CARB emission reduction requirements. The Housing Element Update is required by the State to be completed within 18 months after RTP/SCS adoption or by October 2013.

City and County land use policies, including General Plans, are not required to be consistent with the RTP and associated SCS or APS. However, new provisions of CEQA would incentivize, through streamlining and other provisions, qualified projects that are consistent with an approved SCS or APS and categorized as "transit priority projects."

Assembly Bill 939 and Senate Bill 1374. Assembly Bill 939 (AB 939) requires that each jurisdiction in California to divert at least 50 percent of its waste away from landfills, whether through waste reduction, recycling or other means. Senate Bill 1374 (SB 1374) requires the California Integrated Waste Management Board to adopt a model ordinance by March 1, 2004 suitable for adoption by any local agency to require 50 to 75 percent diversion of construction and demolition of waste materials from landfills.

Executive Order S-13-08. Executive Order S-13-08 indicates that "climate change in California during the next century is expected to shift precipitation patterns, accelerate sea level rise and increase temperatures, thereby posing a serious threat to California's economy, to the health and welfare of its population and to its natural resources." Pursuant to the requirements in the order, the 2009 California Climate Adaptation Strategy (California Natural Resource Agency 2009) was adopted, which is the "... first statewide, multi-sector, region-specific, and information-based climate change in California, identifying and exploring strategies to adapt to climate change, and specifying a direction for future research.

Executive Order B-30-15. Executive Order B-30-15, establishing a new interim statewide greenhouse gas emission reduction target to reduce greenhouse gas emissions to 40 percent below 1990 levels by 2030, was signed by Governor Brown in April 2015.

Executive Order B-29-15. Executive Order B-29-15, mandates a statewide 25% reduction in potable water usage and was signed into law on April 1, 2015.

Executive Order B-37-16. Executive Order B-37-16, continuing the State's adopted water reduction, was signed into law on May 9, 2016. The water reduction builds off the mandatory 25% reduction called for in EO B-29-15.

2.2.4 South Coast Air Quality Management District

The Project is within the South Coast Air Basin, which is under the jurisdiction of the South Coast Air Quality Management District (SCAQMD). SCAQMD Regulation XXVII currently includes three rules:

- The purpose of Rule 2700 is to define terms and post global warming potentials.
- The purpose of Rule 2701, SoCal Climate Solutions Exchange, is to establish a voluntary program to encourage, quantify, and certify voluntary, high quality certified greenhouse gas emission reductions in the SCAQMD.
- Rule 2702, Greenhouse Gas Reduction Program, was adopted on February 6, 2009. The purpose of this rule is to create a Greenhouse Gas Reduction Program for greenhouse gas emission reductions in the SCAQMD. The SCAQMD will fund projects through contracts in response to requests for proposals or purchase reductions from other parties.

SCAQMD Threshold Development

The SCAQMD has established recommended significance thresholds for greenhouse gases for local lead agency consideration ("SCAQMD draft local agency threshold"). SCAQMD has published a five-tiered draft GHG threshold which includes a 10,000 metric ton of CO₂e per year for stationary/industrial sources and 3,000 metric tons of CO₂e per year significance threshold for residential/commercial projects (South Coast Air Quality Management District 2010c). Tier 3 is anticipated to be the primary tier by which the SCAQMD will determine significance for projects. The Tier 3 screening level for stationary sources is based on an emission capture rate of 90 percent for all new or modified projects. A 90-precent emission capture rate means that 90 percent of total emissions from all new or modified stationary source projects would be subject to CEQA analysis. The 90-percent capture rate GHG significance screening level in Tier 3 for stationary sources was derived using the SCAQMD's annual Emissions Reporting Program.

The current draft thresholds consist of the following tiered approach:

- Tier 1 consists of evaluating whether or not the project qualifies for any applicable exemption under CEQA.
- Tier 2 consists of determining whether or not the project is consistent with a greenhouse gas reduction plan. If a project is consistent with a qualifying local greenhouse gas reduction plan, it does not have significant greenhouse gas emissions.
- Tier 3 consists of screening values, which the lead agency can choose but must be consistent. A project's construction emissions are averaged over 30 years and are added to a project's operational emissions. If a project's emissions are under one of the following screening thresholds, then the project is less than significant:
 - All land use types: 3,000 MTCO2e per year
 - Based on land use types: residential is 3,500 MTCO2e per year; commercial is 1,400 MTCO2e per year; and mixed use is 3,000 MTCO2e per year
- Tier 4 has the following options:
 - Option 1: Reduce emissions from business as usual by a certain percentage; this percentage is currently undefined
 - Option 2: Early implementation of applicable AB 32 Scoping Plan measures

- Option 3: Year 2020 target for service populations (SP), which includes residents and employees: 4.8 MTCO2e/SP/year for projects and 6.6 MTCO2e/SP/year for plans;
- Option 3, 2035 target: 3.0 MTCO2e/SP/year for projects and 4.1 MTCO2e/SP/year for plans
- Tier 5 involves mitigation offsets to achieve target significance threshold.

2.2.5 Local

City of Lake Elsinore Climate Action Plan

In compliance with State Assembly Bill AB32 and Executive Order S-3-05, the City of Lake Elsinore adopted a Climate Action Plan (CAP) on December 13, 2011. The City's CAP is a long range plan designed to reduce community-wide greenhouse gas (GHG) emissions from activities within the City limits. Specifically, the CAP is designed to:

- Benchmark Lake Elsinore's existing (2008) GHG emissions and projected emissions relative to state-wide emissions targets;
- Establish GHG emissions reduction strategies and measures to reduce the City's proportionate share of emissions to meet the state-wide targets identified in Assembly Bill 32 (AB32), and Executive Order S-3-05;
- Set forth procedures to monitor and verify the effectiveness of the CAP and require amendment if the CAP is not achieving targeted levels of emissions;
- Mitigate Lake Elsinore's GHG emissions impacts (by reducing GHG emissions consistent with the State of California via the California Environmental Quality Act (CEQA) Guidelines, AB32, and Executive Order S-3-05). The CEQA Guidelines encourage the adoption of plans or mitigation programs as a means of comprehensively addressing the cumulative impacts of projects (see CEQA Guidelines, Sections 15064(h)(3) and 15130(c); and,
- Serve as the programmatic tiering document for the purposes of CEQA within the City of Lake Elsinore for GHG emissions, and what applicable projects will be reviewed. If a proposed development project can demonstrate it is consistent with the applicable emissions reduction measures included in the CAP, the programs and standards that would be implemented as a result of the CAP, and the General Plan Update growth projections, the project's environmental review pertaining to GHG impacts may be streamlined as allowed by CEQA Guidelines Sections 15152 and 15183.5.

The CAP is not intended to limit future development or economic growth within Lake Elsinore; rather, by adopting a CAP, the City has established the compliance and performance standards that a project is to meet in order to satisfy State mandates. Discussions of the Project's consistency with the CAP's Greenhouse Gas Reduction Measures are discussed in Section 7.3.

The City of Lake Elsinore's CAP has a GHG emissions target that is specifically intended for use in evaluating the significance of GHG emissions from community-wide emissions. The City selected

efficiency-based targets for the years governed by the General Plan to reduce community-wide emissions to 6.6 MT CO2e per service population per year by 2020 (a 22.3% reduction from the 2008 rate of 8.5 MT CO2e/SP) and to 4.4 MT CO2e per service population per year by 2030 (a 48.2% reduction from the 2008 rate of 8.5 MT CO2e/SP). These efficiency based targets represent the AB 32 and Executive Order S-3-05 targeted emissions levels for 2020 and 2030 on a per service population basis and they were derived by dividing the state-wide AB 32 targeted emissions level for 2020 and 2030 state-wide service population respectively. Therefore, these targets represent the maximum quantity of emissions each resident and employee in the State of California could emit in 2020 and 2030 based on emissions levels necessary to achieve the state-wide AB 32 and Executive Order S-3-05 GHG emissions reduction goals.

In order to meet the state-wide efficiency metric targets, the CAP must demonstrate that it can reduce community-wide emissions to 6.6 MT CO2e/SP (or 944,737 MT CO2e total based on an estimated 2020 service population of 143,142) by 2020 and 4.4 MT CO2e/SP (or 1,334,243 MT CO2e based on an estimated 2030 service population of 303,237) by 2030.

Therefore, to determine whether the project's GHG emissions are significant, this analysis uses the SCAQMD draft local agency tier 3 screening threshold of 3,000 MTCO2e.

The project will be subject to the latest requirements of the California Green Building and Title 24 Energy Efficiency Standards (currently 2019) which would reduce project-related greenhouse gas emissions.

3.0 Setting

3.1 Existing Physical Setting

The project site is located in the City of Lake Elsinore, which is part of the South Coast Air Basin (SCAB) that includes all of Orange County as well as the non-desert portions of Los Angeles, Riverside, and San Bernardino Counties. The South Coast Air Basin is located on a coastal plain with connecting broad valleys and low hills to the east. Regionally, the South Coast Air Basin is bounded by the Pacific Ocean to the southwest and high mountains to the east forming the inland perimeter.

3.1.1 Local Climate and Meteorology

Dominant airflows provide the driving mechanism for transport and dispersion of air pollution. The mountains surrounding the region form natural horizontal barriers to the dispersion of air contaminants. Air pollution created in the coastal areas and around the Los Angeles area is transported inland until it reaches the mountains where the combination of mountains and inversion layers generally prevent further dispersion. This poor ventilation results in a gradual degradation of air quality from the coastal areas to inland areas. Air stagnation may occur during the early evening and early morning periods of transition between day and nighttime flows. The region also experiences periods of hot, dry winds from the desert, known as Santa Ana winds. If the Santa Ana winds are strong, they can surpass the sea breeze, which blows from the ocean to the land, and carry the suspended dust and pollutants out to the ocean. If the winds are weak, they are opposed by the sea breeze and cause stagnation, resulting in high pollution events.

The annual average temperature varies little throughout much of the basin, ranging from the low to middle 60s, measured in degrees Fahrenheit (°F). With more pronounced oceanic influence, coastal areas show less variability in annual minimum and maximum temperatures than inland areas where the project site is located. The majority of the annual rainfall in the basin occurs between November and April. Summer rainfall is minimal and is generally limited to scattered thunderstorms in the coastal regions and slightly heavier showers in the eastern portion of the basin along the coastal side of the mountains. Year-to-year patterns in rainfall are unpredictable because of fluctuations in the weather.

Temperature inversions limit the vertical depth through which pollution can be mixed. Among the most common temperature inversions in the basin are radiation inversions, which form on clear winter nights when cold air off mountains sink to the valley floor while the air aloft over the valley remains warm. These inversions, in conjunction with calm winds, trap pollutants near the source. Other types of temperature inversions that affect the basin include marine, subsidence, and high-pressure inversions.

Summers are often periods of hazy visibility and occasionally unhealthful air. Strong temperature inversions may occur that limit the vertical depth through which air pollution can be dispersed. Air pollutants concentrate because they cannot rise through the inversion layer and disperse. These inversions are more common and persistent during the summer months. Over time, sunlight produces photochemical reactions within this inversion layer that creates ozone, a particularly harmful air

pollutant. Occasionally, strong thermal convections occur which allows the air pollutants to rise high enough to pass over the mountains and ultimately dilute the smog cloudtrap pollutants such as automobile exhaust near their source. While these inversions may lead to air pollution "hot spots" in heavily developed coastal areas of the basin, there is not enough traffic in inland valleys to cause any winter air pollution problems. Despite light wind conditions, especially at night and in the early morning, winter is generally a period of good air quality in the project vicinity.

In the winter, light nocturnal winds result mainly from the drainage of cool air off of the mountains toward the valley floor while the air aloft over the valley remains warm. This forms a type of inversion known as a radiation inversion. Such winds are characterized by stagnation and poor local mixing and trap pollutants such as automobile exhaust near their source. While these inversions may lead to air pollution "hot spots" in heavily developed coastal areas of the basin, there is not enough traffic to cause any winter air pollution problems. Despite light wind conditions, especially at night and in the early morning, winter is generally a period of good air quality in the project vicinity.

The temperature and precipitation levels for the City of Lake Elsinore are in Table 3. Table 3 shows that August is typically the warmest month and December is typically the coolest month. Rainfall in the project area varies considerably in both time and space. Almost all the annual rainfall comes from the fringes of mid-latitude storms from late November to early April, with summers being almost completely dry.

Month	Tempera	Average Precipitation	
wonth	Average High	Average Low	(inches)
January	66.0	38.9	2.56
February	67.7	40.9	2.68
March	72.3	43.4	1.77
April	77.7	47.0	0.67
May	83.8	52.5	0.20
June	91.0	56.5	0.05
July	97.7	61.0	0.16
August	98.6	62.5	0.05
September	93.4	58.9	0.17
October	83.4	52.0	0.59
November	70.4	42.1	0.90
December	65.8	38.5	2.11
Annual Average	80.9	49.7	11.9

Table 3: Meteorological Summary

3.1.2 Local Air Quality

The SCAQMD has divided the South Coast Air Basin into 38 air-monitoring areas with a designated ambient air monitoring station representative of each area. The project site is located in the City of Lake Elsinore in the Lake Elsinore (Area 25). The nearest air monitoring station to the project site is the

Lake Elsinore - W Flint Street Station (Lake Elsinore Station). The Lake Elsinore Station is located approximately 2.3 miles southeast of the project site, at 506 W Flint Street, Lake Elsinore; however, this location does not provide all ambient weather data. Therefore, additional data was pulled from the SCAQMD historical data for the Lake Elsinore Area (Area 25) for both sulfur dioxide and carbon monoxide to provide the existing levels. Table 4 presents the monitored pollutant levels within the vicinity. However, it should be noted that due to the air monitoring station distance from the project site, recorded air pollution levels at the air monitoring station reflect with varying degrees of accuracy, local air quality conditions at the project site.

		Year			
Pollutant (Standard) ²	2017	2018	2019		
Ozone:					
Maximum 1-Hour Concentration (ppm)	0.121	0.116	0.108		
Days > CAAQS (0.09 ppm)	23	16	4		
Maximum 8-Hour Concentration (ppm)	0.098	0.096	0.089		
Days > NAAQS (0.07 ppm)	54	30	28		
Days > CAAQS (0.070 ppm)	56	31	31		
Carbon Monoxide:					
Maximum 1-Hour Concentration (ppm)	1.2	1.1	1.6		
Days > NAAQS (20 ppm)	0	0	0		
Maximum 8-Hour Concentration (ppm)	0.8	0.8	0.7		
Days > NAAQS (9 ppm)	0	0	0		
Nitrogen Dioxide:					
Maximum 1-Hour Concentration (ppm)	0.049	0.041	0.038		
Days > NAAQS (0.25 ppm)	0	0	0		
Sulfur Dioxide:					
Maximum 1-Hour Concentration (ppm)	*	*	*		
Days > CAAQS (0.25 ppm)	0	0	0		
Inhalable Particulates (PM10):					
Maximum 24-Hour Concentration (ug/m ³)	134.1	105.3	93.8		
Days > NAAQS (150 ug/m ³)	0	0	0		
Days > CAAQS (50 ug/m ³)	*	*	*		
Annual Average (ug/m ³)	23.6	23.3	19.7		
Annual > NAAQS (50 ug/m ³)	No	No	No		
Annual > CAAQS (20 ug/m ³)	Yes	Yes	No		
Ultra-Fine Particulates (PM2.5):					
Maximum 24-Hour Concentration (ug/m ³)	27.2	31.3	17.6		
Days > NAAQS (35 ug/m ³)	*	*	*		
Annual Average (ug/m ³)	11.3	6.7	*		
Annual > NAAQS (15 ug/m3)	No	No	*		
Annual > CAAQS (12 ug/m ³)	No	No	*		

Table 4: Local Area Air Quality Levels from the Lake Elsinore Monitoring Stations

³ No data available.

The monitoring data presented in Table 4 shows that ozone is the air pollutant of primary concern in the project area, which are detailed below.

Ozone

During the 2017 to 2019 monitoring period, the State 1-hour concentration standard for ozone has been exceeded between four and 23 days each year at the Lake Elsinore Station. The State 8-hour ozone standard has been exceeded between 31 and 56 days each year over the past three years at the Lake Elsinore Station. The Federal 8-hour ozone standard has been exceeded between 28 and 54 days each year over the past three years at the Lake Elsinore Station.

Ozone is a secondary pollutant as it is not directly emitted. Ozone is the result of chemical reactions between other pollutants, most importantly hydrocarbons and NO₂, which occur only in the presence of bright sunlight. Pollutants emitted from upwind cities react during transport downwind to produce the oxidant concentrations experienced in the area. Many areas of the SCAQMD contribute to the ozone levels experienced at the monitoring station, with the more significant areas being those directly upwind.

Carbon Monoxide

CO is another important pollutant that is due mainly to motor vehicles. The Elsinore Area did not record an exceedance of the state or federal 1-hour or 8-hour CO standards for the last three years.

Nitrogen Dioxide

The Lake Elsinore Station did not record an exceedance of the State or Federal NO₂ standards for the last three years.

Sulfur Dioxide

The Elsinore Area did not record an exceedance of the State SO₂ standards for the last three years.

Particulate Matter

During the 2017 to 2019 monitoring period, there was insufficient data for the State 24-hour concentration standard for PM10 at the Lake Elsinore Station. Over the same time period, the Federal 24-hour and annual standards for PM10 have not been exceeded at the Lake Elsinore Station.

During the 2017 to 2019 monitoring period, there was insufficient data for the Federal 24-hour standard for PM2.5 at the Lake Elsinore Station.

According to the EPA, some people are much more sensitive than others to breathing fine particles (PM10 and PM2.5). People with influenza, chronic respiratory and cardiovascular diseases, and the elderly may suffer worsening illness and premature death due to breathing these fine particles. People with bronchitis can expect aggravated symptoms from breathing in fine particles. Children may experience decline in lung function due to breathing in PM10 and PM2.5. Other groups considered sensitive are smokers and people who cannot breathe well through their noses. Exercising athletes are also considered sensitive, because many breathe through their mouths during exercise.

3.1.3 Attainment Status

The EPA and the ARB designate air basins where ambient air quality standards are exceeded as "nonattainment" areas. If standards are met, the area is designated as an "attainment" area. If there is inadequate or inconclusive data to make a definitive attainment designation, they are considered "unclassified." National nonattainment areas are further designated as marginal, moderate, serious, severe, or extreme as a function of deviation from standards. Each standard has a different definition, or 'form' of what constitutes attainment, based on specific air quality statistics. For example, the Federal 8-hour CO standard is not to be exceeded more than once per year; therefore, an area is in attainment of the CO standard if no more than one 8-hour ambient air monitoring values exceeds the

threshold per year. In contrast, the federal annual $PM_{2.5}$ standard is met if the three-year average of the annual average $PM_{2.5}$ concentration is less than or equal to the standard. Table 5 lists the attainment status for the criteria pollutants in the basin.

Pollutant	Averaging Time	National Standards ¹	Attainment Date ²	California Standards ³	
1979	1-Hour	Nonattainment	11/15/2010	Extreme	
1-Hour Ozone ⁴	(0.12 ppm)	(Extreme)	(Not attained ⁴)	Nonattainment	
1997	8-Hour	Nonattainment	6/15/2024		
8-Hour Ozone ⁵	(0.08 ppm)	(Extreme)	0/13/2024		
2008	8-Hour	Nonattainment	12/31/2032	Nonattainment	
8-Hour Ozone	(0.075 ppm)	(Extreme)	12/31/2032	Nonattainment	
2015	8-Hour	Designations Danding	~2037		
8-Hour Ozone	(0.070 ppm)	Designations Pending	2037		
СО	1-Hour (35 ppm)	Attainment	6/11/2007	Maintenance	
co	8-Hour (9 ppm)	(Maintenance)	(Attained)	Maintenance	
NO ₂ ⁶	1-Hour (100 ppb)	Attainment	9/22/1998	Attainment	
NO2*	Annual (0.053 ppm)	(Maintenance)	(Attained)	Attainment	
	1-Hour (75 ppb)	Designations Pending	Pending		
SO ₂ ⁷	24-Hour (0.14 ppm)	Unclassifiable/	3/19/1979	Attainment	
	Annual (0.03 ppm)	Attainment	(Attained)		
	24-Hour Nonattainment		12/31/2006		
PM10	(150 μg/m ³)	(Serious) ⁸	(Redesignation request	Nonattainment	
	(150 µg/11 ⁺)	(Serious)*	submitted) ⁸		
			12/31/2006		
PM2.5	24-Hour (35 μg/m ³)	Nonattainment	(Redesignation request	Unclassified	
			submitted) ⁸		
Lead	3-Months Rolling	Nonattainment	12/31/2015	Nonattainment	
Leau	(0.15 μg/m³)	(Partial) ⁹	12/31/2013	(Partial) ⁹	

Table 5: South Coast Air Basin Attainment Status

Notes:

¹ Obtained from Draft 2012 AQMP, SCAQMD, 2012. EPA often only declares Nonattainment areas; everywhere else is listed as Unclassified/Attainment or Unclassifiable.

² A design value below the NAAQS for data through the full year or smog season prior to the attainment date is typically required for attainment demonstration.

³ Obtained from http://www.arb.ca.gov/desig/adm/adm.htm.

⁴ 1-hour O₃ standard (0.13 ppm) was revoked, effective June 15, 2005; however, the Basin has not attained this standard based on 2008-2010 data has some continuing obligations under the former standard.

⁵ 1997 8-hour O₃ standard (0.08 ppm) was reduced (0.075 ppm), effective May 27, 2008; the 1997 O3 standard and most related implementation rules remain in place until the 1997 standard is revoked by U.S. EPA.

⁶ New NO₂ 1-hour standard, effective August 2, 2010; attainment designations June, 2013; annual NO₂ standard retained.

⁷ The 1971 annual and 24-hour SO₂ standards were revoked, effective August 23, 2010; however, these 1971 standards will remain in effect until one year after U.S. EPA promulgates area designations for the 2010 SO₂ 1-hour standard. Area designations expected in 2012, with SSAB designated Unclassifiable/Attainment.

⁸ Annual PM10 standard was revoked, effective December 18, 2006; redesignation request to Attainment of the 24-hour PM10 standard is pending with U.S. EPA

⁹ Partial Nonattainment designation - Los Angeles County portion of Basin only

3.2 Greenhouse Gases

Constituent gases of the Earth's atmosphere, called atmospheric greenhouse gases (GHG), play a critical role in the Earth's radiation amount by trapping infrared radiation emitted from the Earth's

surface, which otherwise would have escaped to space. Prominent greenhouse gases contributing to this process include carbon dioxide (CO₂), methane (CH₄), ozone, water vapor, nitrous oxide (N₂O), and chlorofluorocarbons (CFCs). This phenomenon, known as the Greenhouse Effect, is responsible for maintaining a habitable climate. Anthropogenic (caused or produced by humans) emissions of these greenhouse gases in excess of natural ambient concentrations are responsible for the enhancement of the Greenhouse Effect and have led to a trend of unnatural warming of the Earth's natural climate, known as global warming or climate change. Emissions of gases that induce global warming are attributable to human activities associated with industrial/manufacturing, agriculture, utilities, transportation, and residential land uses. Transportation is responsible for 41 percent of the State's greenhouse gas emissions, followed by electricity generation. Emissions of CO₂ and nitrous oxide (NO₂) are byproducts of fossil fuel combustion. Methane, a potent greenhouse gas, results from off-gassing associated with agricultural practices and landfills. Sinks of CO₂, where CO₂ is stored outside of the atmosphere, include uptake by vegetation and dissolution into the ocean. Table 6 provides a description of each of the greenhouse gases and their global warming potential.

Additional information is available: <u>https://www.arb.ca.gov/cc/inventory/data/data.htm</u>

<Table 6 on next page>

Setting

Greenhouse Gas	Description and Physical Properties	Sources
Nitrous oxide	Nitrous oxide (N ₂ 0),also known as laughing gas is a colorless gas. It has a lifetime of 114 years. Its global warming potential is 298.	Microbial processes in soil and water, fuel combustion, and industrial processes. In addition to agricultural sources, some industrial processes (nylon production, nitric acid production) also emit N ₂ 0.
Methane	Methane (CH ₄) is a flammable gas and is the main component of natural gas. It has a lifetime of 12 years. Its global warming potential is 25.	A natural source of CH ₄ is from the decay of organic matter. Methane is extracted from geological deposits (natural gas fields). Other sources are from the decay of organic material in landfills, fermentation of manure, and cattle farming.
Carbon dioxide	Carbon dioxide (CO ₂) is an odorless, colorless, natural greenhouse gas. Carbon dioxide's global warming potential is 1. The concentration in 2005 was 379 parts per million (ppm), which is an increase of about 1.4 ppm per year since 1960.	Natural sources include decomposition of dead organic matter; respiration of bacteria, plants, animals, and fungus; evaporation from oceans; and volcanic outgassing. Anthropogenic sources are from burning coal, oil, natural gas, and wood.
Chlorofluorocarbons	CFCs are nontoxic, nonflammable, insoluble, and chemically unreactive in the troposphere (the level of air at the earth's surface). They are gases formed synthetically by replacing all hydrogen atoms in methane or methane with chlorine and/or fluorine atoms. Global warming potentials range from 3,800 to 8,100.	Chlorofluorocarbons were synthesized in 1928 for use as refrigerants, aerosol propellants, and cleaning solvents. They destroy stratospheric ozone, therefore their production was stopped as required by the Montreal Protocol.
Hydrofluorocarbons	Hydrofluorocarbons (HFCs) are a group of greenhouse gases containing carbon, chlorine, and at least one hydrogen atom. Global warming potentials range from 140 to 11,700.	Hydrofluorocarbons are synthetic manmade chemicals used as a substitute for chlorofluorocarbons in applications such as automobile air conditioners and refrigerants.
Perfluorocarbons	Perfluorocarbons (PFCs) have stable molecular structures and only break down by ultraviolet rays about 60 kilometers above the Earth's surface. They have a lifetime 10,000 to 50,000 years. They have a global warming potential range of 6,200 to 9,500.	Two main sources of perfluorocarbons are primary aluminum production and semiconductor manufacturing.
Sulfur hexafluoride	Sulfur hexafluoride (SF ₆) is an inorganic, odorless, colorless, and nontoxic, nonflammable gas. It has a lifetime of 3,200 years. It has a high global warming potential, 23,900.	This gas is manmade and used for insulation in electric power transmission equipment, in the magnesium industry, in semiconductor manufacturing, and as a tracer gas for leak detection.
_	vernmental Panel on Climate Change 2014a and Intergovernmental Panel c.ch/publications_and_data/ar4/wg1/en/ch2s2-10-2.html	on Climate Change 2014b.

Table 6: Description of Greenhouse Gases

4.0 Modeling Parameters and Assumptions

4.1 Construction

Typical emission rates from construction activities were obtained from CalEEMod Version 2016.3.2 CalEEMod is a computer model published by the SCAQMD for estimating air pollutant emissions. The CalEEMod program uses the EMFAC2014 computer program to calculate the emission rates specific for the southwestern portion of Riverside County for construction-related employee vehicle trips and the OFFROAD2011 computer program to calculate emission rates for heavy truck operations. EMFAC2014 and OFFROAD2011 are computer programs generated by CARB that calculates composite emission rates for vehicles. Emission rates are reported by the program in grams per trip and grams per mile or grams per running hour. Using CalEEMod, the peak daily air pollutant emissions were calculated and presented below. These emissions represent the highest level of emissions for each of the construction phases in terms of air pollutant emissions.

The analysis assesses the emissions associated with the construction of the proposed project as indicated in Table 1. The proposed project is anticipated to be operational in 2022; therefore, construction is estimated to start no sooner than mid-July 2021 and be completed by mid-February 2022. The phases of the construction activities which have been analyzed below are: 1) demolition, 2) site preparation, 3) grading, 4) building, 5) paving, and 6) architectural coating. For details on construction modeling and construction equipment for each phase, please see Appendix A.

The project will be required to comply with existing SCAQMD rules for the reduction of fugitive dust emissions. SCAQMD Rule 403 establishes these procedures. Compliance with this rule is achieved through application of standard best management practices in construction and operation activities, such as application of water or chemical stabilizers to disturbed soils, managing haul road dust by application of water, covering haul vehicles, restricting vehicle speeds on unpaved roads to 15 mph, sweeping loose dirt from paved site access roadways, cessation of construction activity when winds exceed 25 mph and establishing a permanent, stabilizing ground cover on finished sites. In addition, projects that disturb 50 acres or more of soil or move 5,000 cubic yards of materials per day are required to submit a Fugitive Dust Control Plan or a Large Operation Notification Form to SCAQMD. Based on the size of the Project area (disturbed area of approximately 1.26 acres) and the fact that the project won't export more than 5,000 cubic yards of material a day a Fugitive Dust Control Plan or Large Operation Notification would not be required.

SCAQMD's Rule 403 minimum requirements require that the application of the best available dust control measures are used for all grading operations and include the application of water or other soil stabilizers in sufficient quantity to prevent the generation of visible dust plumes. Compliance with Rule 403 would require the use of water trucks during all phases where earth moving operations would occur. Compliance with Rule 403 is required.

4.2 Operations

Operational or long-term emissions occur over the life of the Project. Both mobile and area sources generate operational emissions. Area source emissions arise from consumer product usage, heaters that consume natural gas, gasoline-powered landscape equipment, and architectural coatings (painting). Mobile source emissions from motor vehicles are the largest single long-term source of air pollutants from the operation of the Project. Small amounts of emissions would also occur from area sources such as the consumption of natural gas for heating, hearths, from landscaping emissions, and consumer product usage. The operational emissions were estimated using the latest version of CalEEMod.

Mobile Sources

Mobile sources include emissions from the additional vehicle miles generated from the proposed project. The vehicle trips associated with the proposed project are based upon the trip generation rates give in the Traffic Scoping Agreement which uses the ITE 10th Trip Generation Manual. The Traffic Scoping Agreement shows a trip generation rate of 720 trips per tunnel per day (taking into consideration the pass-by trip reduction). For modeling purposes, this equates to approximately 132.5 trips per thousand square foot per day (with incorporation of the pass-by trip reduction).

The program then applies the emission factors for each trip which is provided by the EMFAC2014 model to determine the vehicular traffic pollutant emissions. The CalEEMod default trip lengths were used in this analysis. Please see CalEEMod output comments sections in Appendix A and B for details.

Area Sources

Area sources include emissions from consumer products, landscape equipment and architectural coatings. Landscape maintenance includes fuel combustion emissions from equipment such as lawn mowers, rototillers, shredders/grinders, blowers, trimmers, chain saws, and hedge trimmers, as well as air compressors, generators, and pumps. As specifics were not known about the landscaping equipment fleet, CalEEMod defaults were used to estimate emissions from landscaping equipment.

Per SCAQMD Rule 1113 as amended on June 3, 2011, the architectural coatings that would be applied after January 1, 2014 will be limited to an average of 50 grams per liter or less and the CalEEMod model default was utilized as the new model takes this rule into account.

Energy Usage

2016.3.2 CalEEMod defaults were utilized.

4.3 Localized Construction Analysis

The SCAQMD has published a "Fact Sheet for Applying CalEEMod to Localized Significance Thresholds" (South Coast Air Quality Management District 2011b). CalEEMod calculates construction emissions based on the number of equipment hours and the maximum daily disturbance activity possible for each piece of equipment. In order to compare CalEEMod reported emissions against the localized significance threshold lookup tables, the CEQA document should contain in its project design features or its mitigation measures the following parameters:

- 1. The off-road equipment list (including type of equipment, horsepower, and hours of operation) assumed for the day of construction activity with maximum emissions.
- 2. The maximum number of acres disturbed on the peak day.

source/ceqa/handbook/localized-significance-thresholds/caleemod-guidance.pdf?sfvrsn=2

grading.

- 3. Any emission control devices added onto off-road equipment.
- 4. Specific dust suppression techniques used on the day of construction activity with maximum emissions.

The construction equipment showing the equipment associated with the maximum area of disturbance is shown in Table 7.

Activity	Equipment	Equipment Number		Total Acres		
Demolition	Rubber Tired Dozers	1	0.5	0.5		
Demolition	Tractors/Loaders/Backhoes	1	0.5	0.5		
Total Per Phase				1.0		
Site Preparation	Tractors/Loaders/Backhoes	1	0.5	0.5		
Total Per Phase				0.5		
	Graders	1	0.5	0.5		
Grading	Rubber Tired Dozers	1	0.5	0.5		
	Tractors/Loaders/Backhoes	1	0.5	0.5		
Total Per Phase				1.5		
Notes: ¹ Source: South Coast AQMD, Fact Sheet for Applying CalEEMod to Localized Significance Thresholds. http://www.aqmd.gov/docs/default-						

Table 7: Construction Equipment Assumptions¹

As shown in Table 7, the maximum number of acres disturbed in a day would be 1.5 acres during

The local air quality emissions from construction were analyzed using the SCAQMD's Mass Rate Localized Significant Threshold Look-up Tables and the methodology described in Localized Significance <u>Threshold Methodology</u>, prepared by SCAQMD, revised July 2008. The Look-up Tables were developed by the SCAQMD in order to readily determine if the daily emissions of CO, NOx, PM10, and PM2.5 from the proposed project could result in a significant impact to the local air quality. The emission thresholds were based on the Elsinore source receptor area (SRA 25) and a disturbance of 1 acre per day, to be conservative, at a distance of 50 meters. According to LST methodology, any receptor located closer than 25 meters should be based on the 25 meter threshold. The closest receptors are the single-family residential uses located approximately 255 feet (~78 meters) northwest and the multi-family residential uses located approximately 290 feet (~88 meters) west of the boundaries of the proposed development; therefore, to be conservative, the 50-meter threshold was used.

4.4 Localized Operational Analysis

For operational emissions, the screening tables for a disturbance area of 1 acre per day, to be conservative, and a distance of 50 meters were used to determine significance. The tables were compared to the project's onsite operational emissions.

5.0 Thresholds of Significance

5.1 Air Quality Thresholds of Significance

5.1.1 CEQA Guidelines for Air Quality

The CEQA Guidelines define a significant effect on the environment as "a substantial, or potentially substantial, adverse change in the environment." To determine if a project would have a significant impact on air quality, the type, level, and impact of emissions generated by the project must be evaluated.

The following air quality significance thresholds are contained in Appendix G of the CEQA Guidelines. A significant impact would occur if the project would:

- a) Conflict with or obstruct implementation of the applicable air quality plan;
- b) Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is nonattainment under an applicable national or state ambient air quality standard;
- c) Expose sensitive receptors to substantial pollutant concentrations; or
- d) Result in other emissions (such as those leading to odors) adversely affecting a substantial number of people.

While the final determination of whether a project is significant is within the purview of the Lead Agency pursuant to Section 15064(b) of the CEQA Guidelines, SCAQMD recommends that its quantitative air pollution thresholds be used to determine the significance of project emissions. If the Lead Agency finds that the project has the potential to exceed these air pollution thresholds, the project should be considered to have significant air quality impacts. There are daily emission thresholds for construction and operation of a proposed project in the basin.

5.1.2 Regional Significance Thresholds for Construction Emissions

The following CEQA significance thresholds for construction emissions are established for the Basin:

- 75 pounds per day (lbs/day) of VOC
- 100 lbs/day of NO_x
- 550 lbs/day of CO

- 150 lbs/day of PM₁₀
- 55 lbs/day of PM_{2.5}
- 150 lbs/day of SO₂

Projects in the basin with construction-related emissions that exceed any of the emission thresholds are considered to be significant under SCAQMD guidelines.

5.1.3 Regional Significance Thresholds for Operational Emissions

The daily operational emissions significance thresholds for the basin are as follows:

• 55 pounds per day (lbs/day) of VOC • 55 lbs/day of NO_x

- 550 lbs/day of CO
- 150 lbs/day of PM₁₀

- 55 lbs/day of PM_{2.5}
- 150 lbs/day of SO₂

Local Microscale Concentration Standards The significance of localized project impacts under CEQA depends on whether ambient CO levels in the vicinity of the project are above or below State and federal CO standards. If ambient levels are below the standards, a project is considered to have a significant impact if project emissions result in an exceedance of one or more of these standards. If ambient levels already exceed a State or federal standard, project emissions are considered significant if they increase 1-hour CO concentrations by 1.0 ppm or more or 8-hour CO concentrations by 0.45 ppm or more. The following are applicable local emission concentration standards for CO:

- California State 1-hour CO standard of 20.0 ppm
- California State 8-hour CO standard of 9.0 ppm

5.1.4 Thresholds for Localized Significance

Project-related construction air emissions may have the potential to exceed the State and Federal air quality standards in the project vicinity, even though these pollutant emissions may not be significant enough to create a regional impact to the South Coast Air Basin. In order to assess local air quality impacts the SCAQMD has developed Localized Significant Thresholds (LSTs) to assess the project-related air emissions in the project vicinity. The SCAQMD has also provided Final Localized Significant Threshold Methodology (LST Methodology), June 2003, which details the methodology to analyze local air emission impacts. The Localized Significant Threshold Methodology found that the primary emissions of concern are NO2, CO, PM10, and PM2.5.

The emission thresholds were calculated based on the Elsinore source receptor area (SRA 25) and a disturbance of 1 acre per day at a distance of 50 meters, to be conservative, for construction and 1 acre a day, to be conservative, for screening of localized operational emissions.

5.2 Greenhouse Gas Thresholds of Significance

5.2.1 CEQA Guidelines for Greenhouse Gas

CEQA Guidelines define a significant effect on the environment as "a substantial, or potentially substantial, adverse change in the environment." To determine if a project would have a significant impact on greenhouse gases, the type, level, and impact of emissions generated by the project must be evaluated.

The following greenhouse gas significance thresholds are contained in Appendix G of the CEQA Guidelines, which were amendments adopted into the Guidelines on March 18, 2010, pursuant to SB 97. A significant impact would occur if the project would:

(a) Generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment; or

(b) Conflict with any applicable plan, policy or regulation of an agency adopted for the purpose of reducing the emissions of greenhouse gases.

However, despite this, currently neither the CEQA statutes, OPR guidelines, nor the draft proposed changes to the CEQA Guidelines prescribe thresholds of significance or a particular methodology for performing an impact analysis; as with most environmental topics, significance criteria are left to the judgment and discretion of the Lead Agency. As previously discussed (Section 2.2.4 of this report), SCAQMD has drafted interim thresholds. The screening threshold of 3,000 MTCO2e per year for all land uses was used in this analysis.

6.0 Air Quality Emissions Impact

6.1 Construction Air Quality Emissions Impact

The latest version of CalEEMod was used to estimate the onsite and offsite construction emissions. The emissions incorporate Rule 402 and 403. Rule 402 and 403 (fugitive dust) are not considered mitigation measures as the project by default is required to incorporate these rules during construction.

6.1.1 Regional Construction Emissions

The construction emissions for the project would not exceed the SCAQMD's daily emission thresholds at the regional level as demonstrated in Table 8; and therefore, would be considered less than significant.

		P	ollutant Emiss	ions (pound	s/day)	
Activity	VOC	NOx	CO	SO ₂	PM10	PM2.5
Demolition						
On-Site ²	1.99	19.70	14.49	0.02	1.10	0.98
Off-Site ³	0.07	0.20	0.50	0.00	0.16	0.04
Total	2.06	19.90	14.99	0.03	1.26	1.02
Site Preparation						
On-Site ²	0.19	1.90	2.26	0.00	0.18	0.11
Off-Site ³	0.04	0.02	0.30	0.00	0.09	0.02
Total	0.23	1.92	2.56	0.00	0.27	0.13
Grading						
On-Site ²	1.29	14.33	6.33	0.01	2.55	1.57
Off-Site ³	0.04	0.02	0.30	0.00	0.09	0.02
Total	1.33	14.35	6.63	0.01	2.64	1.60
Building Construction						
On-Site ²	2.36	19.58	16.96	0.03	0.98	0.93
Off-Site ³	0.13	0.90	1.00	0.00	0.32	0.09
Total	2.49	20.47	17.96	0.03	1.30	1.02
Paving						
On-Site ²	0.93	6.77	8.81	0.01	0.35	0.32
Off-Site ³	0.06	0.03	0.44	0.00	0.15	0.04
Total	0.99	6.81	9.25	0.01	0.49	0.36
Architectural Coating						
On-Site ²	6.62	1.41	1.81	0.00	0.08	0.08
Off-Site ³	0.02	0.01	0.17	0.00	0.06	0.02
Total	6.64	1.42	1.98	0.00	0.14	0.10
Total of overlapping phases ⁴	10.12	28.70	29.19	0.05	1.93	1.48
SCAQMD Thresholds	75	100	550	150	150	55
Exceeds Thresholds	No	No	No	No	No	No
Notes:	•					

Table 8: Regional Significance - Construction Emissions (pounds/day)

Notes:

¹ Source: CalEEMod Version 2016.3.2

² On-site emissions from equipment operated on-site that is not operated on public roads.

³ Off-site emissions from equipment operated on public roads.

⁴ Construction, architectural coatings and paving phases may overlap.

6.1.2 Localized Construction Emissions

The data provided in Table 9 shows that none of the analyzed criteria pollutants would exceed the local emissions thresholds at the nearest sensitive receptors. Therefore, a less than significant local air quality impact would occur from construction of the proposed project.

	On-Si	On-Site Pollutant Emissions (pounds/day) ¹			
Phase	NOx	со	PM10	PM2.5	
Demolition	19.70	14.49	1.10	0.98	
Site Preparation	1.90	2.26	0.18	0.11	
Grading	14.33	6.33	2.55	1.57	
Building Construction	19.58	16.96	0.98	0.93	
Paving	6.77	8.81	0.35	0.32	
Architectural Coating	1.41	1.81	0.08	0.08	
Total of overlapping phases	27.76	27.58	1.41	1.33	
SCAQMD Threshold for 25 meters (82 feet) or less ²	203	1,105	12	4	
Exceeds Threshold?	No	No	No	No	
Notes:					

Table 9: Localized Significance – Construction

¹ Source: Calculated from CalEEMod and SCAQMD's Mass Rate Look-up Tables for one acre, to be conservative, in Lake Elsinore Source Receptor Area (SRA 25). Project will disturb a maximum of 1.5 acres per day (see Table 7).

² The nearest sensitive receptors are the single-family residential uses located approximately 255 feet (~78 meters) northwest and the multi-family residential uses located approximately 290 feet (~88 meters) west of the boundaries of the proposed development; therefore, to be conservative, the 50-meter threshold was used.

6.1.3 Odors

Potential sources that may emit odors during construction activities include the application of materials such as asphalt pavement. The objectionable odors that may be produced during the construction process are of short-term in nature and the odor emissions are expected cease upon the drying or hardening of the odor producing materials. Diesel exhaust and VOCs would be emitted during construction of the project, which are objectionable to some; however, emissions would disperse rapidly from the project site and therefore should not reach an objectionable level at the nearest sensitive receptors. Due to the short-term nature and limited amounts of odor producing materials being utilized, no significant impact related to odors would occur during construction of the proposed project.

The SCAQMD recommends that odor impacts be addressed in a qualitative manner. Such an analysis shall determine whether the project would result in excessive nuisance odors, as defined under the California Code of Regulations and Section 41700 of the California Health and Safety Code, and thus would constitute a public nuisance related to air quality.

Potential sources that may emit odors during the on-going operations of the proposed project would include odor emissions from the trash storage areas. Due to the distance of the nearest receptors from the project site and through compliance with SCAQMD's Rule 402 no significant impact related to odors would occur during the on-going operations of the proposed project.

6.1.4 Construction-Related Toxic Air Contaminant Impact

The greatest potential for toxic air contaminant emissions would be related to diesel particulate emissions associated with heavy equipment operations during construction of the proposed project. The Office of Environmental Health Hazard Assessment (OEHHA) has issued the Air Toxic Hot Spots Program Risk Assessment Guidelines and Guidance Manual for the Preparation of Health Risk Assessments, February 2015 to provide a description of the algorithms, recommended exposure variates, cancer and noncancer health values, and the air modeling protocols needed to perform a health risk assessment (HRA) under the Air Toxics Hot Spots Information and Assessment Act of 1987. Hazard identification includes identifying all substances that are evaluated for cancer risk and/or non-cancer acute, 8-hour, and chronic health impacts. In addition, identifying any multi-pathway substances that present a cancer risk or chronic non-cancer hazard via non-inhalation routes of exposure.

Given the relatively limited number of heavy-duty construction equipment and construction schedule, the proposed project would not result in a long-term substantial source of toxic air containment emissions and corresponding individual cancer risk. Furthermore, construction-based particulate matter (PM) emissions (including diesel exhaust emissions) do not exceed any local or regional thresholds. Therefore, no significant short-term toxic air contaminant impacts would occur during construction of the proposed project.

6.2 Operational Air Quality Emissions Impact

6.2.1 Regional Operational Emissions

The operations-related criteria air quality impacts created by the proposed project have been analyzed through the use of CalEEMod model. The operating emissions were based on year 2023, which is the anticipated opening year for the project per the Traffic Scoping Agreement. The summer and winter emissions created by the proposed project's long-term operations were calculated and the highest emissions from either summer or winter are summarized in Table 10.

		Pollutant Emissions (pounds/day) ¹						
Activity	VOC	NOx	СО	SO2	PM10	PM2.5		
Area Sources ²	0.14	0.00	0.00	0.00	0.00	0.00		
Energy Usage ³	0.01	0.05	0.04	0.00	0.00	0.00		
Mobile Sources ⁴	1.17	8.07	10.58	0.04	3.13	0.86		
Total Emissions	1.32	8.11	10.62	0.05	3.13	0.86		
SCAQMD Thresholds	55	55	550	150	150	55		
Exceeds Threshold?	No	No	No	No	No	No		
Notes:								

Table 10: Regional Significance - Unmitigated Operational Emissions (lbs/day)

¹ Source: CalEEMod Version 2016.3.2

² Area sources consist of emissions from consumer products, architectural coatings, and landscaping equipment.

³ Energy usage consists of emissions from on-site natural gas usage.

⁴ Mobile sources consist of emissions from vehicles and road dust.

Table 10 provides the project's unmitigated operational emissions. Table 10 shows that the project does not exceed the SCAQMD daily emission threshold and regional operational emissions are considered to be less than significant.

6.2.2 Localized Operational Emissions

Table 11 shows the calculated emissions for the proposed operational activities compared with appropriate LSTs. The LST analysis only includes on-site sources; however, the CalEEMod software outputs do not separate on-site and off-site emissions for mobile sources. For a worst-case scenario assessment, the emissions shown in Table 11 include all on-site project-related stationary sources and 10% of the project-related new mobile sources. This percentage is an estimate of the amount of project-related new vehicle traffic that will occur on-site.

	On-S	On-Site Pollutant Emissions (pounds/day) ¹			
On-Site Emission Source	NOx	со	PM10	PM2.5	
Area Sources ²	0.00	0.00	0.00	0.00	
Energy Usage ³	0.05	0.04	0.00	0.00	
On-Site Vehicle Emissions ⁴	0.81	1.06	0.31	0.09	
Total Emissions	0.85	1.10	0.32	0.09	
SCAQMD Threshold for 25 meters (82 feet) ⁵	203	1,105	3	1	
Exceeds Threshold?	No	No	No	No	
Notes:	-	•		•	

¹ Source: Calculated from CalEEMod and SCAQMD's Mass Rate Look-up Tables for one acre, to be conservative, in Lake Elsinore Source Receptor Area (SRA 25).

² Area sources consist of emissions from consumer products, architectural coatings, and landscaping equipment.

³ Energy usage consists of emissions from generation of electricity and on-site natural gas usage.

⁴ On-site vehicular emissions based on 1/10 of the gross vehicular emissions and road dust.

⁵ The nearest sensitive receptors are the single-family residential uses located approximately 255 feet (~78 meters) northwest and the multi-family residential uses located approximately 290 feet (~88 meters) west of the boundaries of the proposed development; therefore, to be conservative, the 50-meter threshold was used.

Table 11 indicates that the local operational emission would not exceed the LST thresholds at the nearest sensitive receptors, located adjacent to the project. Therefore, the project will not result in significant Localized Operational emissions.

6.3 CO Hot Spot Emissions

CO is the pollutant of major concern along roadways because the most notable source of CO is motor vehicles. For this reason, CO concentrations are usually indicative of the local air quality generated by a roadway network and are used as an indicator of potential local air quality impacts. Local air quality impacts can be assessed by comparing future without and with project CO levels to the State and Federal CO standards which were presented in above in Section 5.0.

To determine if the proposed project could cause emission levels in excess of the CO standards discussed above in Section 5.0, a sensitivity analysis is typically conducted to determine the potential for CO "hot spots" at a number of intersections in the general project vicinity. Because of reduced

speeds and vehicle queuing, "hot spots" potentially can occur at high traffic volume intersections with a Level of Service E or worse.

Micro-scale air quality emissions have traditionally been analyzed in environmental documents where the air basin was a non-attainment area for CO. However, the SCAQMD has demonstrated in the CO attainment redesignation request to EPA that there are no "hot spots" anywhere in the air basin, even at intersections with much higher volumes, much worse congestion, and much higher background CO levels than anywhere in Riverside County. If the worst-case intersections in the air basin have no "hot spot" potential, any local impacts will be below thresholds.

The Traffic Scoping Agreement showed that the project would generate 720 average daily trips with 28 trips during the AM peak hour and 66 trips during the PM peak hour. The 1992 Federal Attainment Plan for Carbon Monoxide (1992 CO Plan) showed that an intersection which has a daily traffic volume of approximately 100,000 vehicles per day would not violate the CO standard. The volume of traffic at project buildout would be well below 100,000 vehicles and below the necessary volume to even get close to causing a violation of the CO standard. Therefore no CO "hot spot" modeling was performed and no significant long-term air quality impact is anticipated to local air quality with the on-going use of the proposed project.

6.4 Cumulative Regional Air Quality Impacts

Cumulative projects include local development as well as general growth within the project area. However, as with most development, the greatest source of emissions is from mobile sources, which travel well out of the local area. Therefore, from an air quality standpoint, the cumulative analysis would extend beyond any local projects and when wind patterns are considered, would cover an even larger area. Accordingly, the cumulative analysis for the project's air quality must be generic by nature.

The project area is out of attainment for both ozone and PM10 particulate matter. Construction and operation of cumulative projects will further degrade the local air quality, as well as the air quality of the South Coast Air Basin. The greatest cumulative impact on the quality of regional air cell will be the incremental addition of pollutants mainly from increased traffic from residential, commercial, and industrial development and the use of heavy equipment and trucks associated with the construction of these projects. Air quality will be temporarily degraded during construction activities that occur separately or simultaneously. However, in accordance with the SCAQMD methodology, projects that do not exceed the SCAQMD criteria or can be mitigated to less than criteria levels are not significant and do not add to the overall cumulative impact. The project does not exceed any of the thresholds of significance and therefore is considered less than significant.

6.5 Air Quality Compliance

The California Environmental Quality Act (CEQA) requires a discussion of any inconsistencies between a proposed project and applicable General Plans and Regional Plans (CEQA Guidelines Section 15125). The regional plan that applies to the proposed project includes the SCAQMD Air Quality Management Plan (AQMP). Therefore, this section discusses any potential inconsistencies of the proposed project with the AQMP.

The purpose of this discussion is to set forth the issues regarding consistency with the assumptions and objectives of the AQMP and discuss whether the proposed project would interfere with the region's ability to comply with Federal and State air quality standards. If the decision-makers determine that the proposed project is inconsistent, the lead agency may consider project modifications or inclusion of mitigation to eliminate the inconsistency.

The SCAQMD CEQA Handbook states that "New or amended General Plan Elements (including land use zoning and density amendments), Specific Plans, and significant projects must be analyzed for consistency with the AQMP." Strict consistency with all aspects of the plan is usually not required A proposed project should be considered to be consistent with the AQMP if it furthers one or more policies and does not obstruct other policies. The SCAQMD CEQA Handbook identifies two key indicators of consistency:

- (1) Whether the project will result in an increase in the frequency or severity of existing air quality violations or cause or contribute to new violations, or delay timely attainment of air quality standards or the interim emission reductions specified in the AQMP.
- (2) Whether the project will exceed the assumptions in the AQMP in 2016 or increments based on the year of project buildout and phase.

Both of these criteria are evaluated in the following sections.

A. Criterion 1 - Increase in the Frequency or Severity of Violations

Based on the air quality modeling analysis contained in this Air Analysis, short-term construction impacts will not result in significant impacts based on the SCAQMD regional and local thresholds of significance. This Air Analysis also found that, long-term operations impacts will not result in significant impacts based on the SCAQMD local and regional thresholds of significance.

Therefore, the proposed project is not projected to contribute to the exceedance of any air pollutant concentration standards and is found to be consistent with the AQMP for the first criterion.

B. Criterion 2 - Exceed Assumptions in the AQMP?

Consistency with the AQMP assumptions is determined by performing an analysis of the proposed project with the assumptions in the AQMP. The emphasis of this criterion is to ensure that the analyses conducted for the proposed project are based on the same forecasts as the AQMP. The 2016-2040 Regional Transportation/Sustainable Communities Strategy, prepared by SCAG, 2016, includes chapters on: the challenges in a changing region, creating a plan for our future, and the road to greater mobility and sustainable growth. These chapters currently respond directly to federal and state requirements placed on SCAG. Local governments are required to use these as the basis of their plans for purposes of consistency with applicable regional plans under CEQA. For this project, the County of Riverside and City of Lake Elsinore Land Use Plans define the assumptions that are represented in the AQMP.

The proposed project has a current land use classification of General Commercial according to the City of Lake Elsinore Lake View District Land Use Map. The proposed project is to develop the site with an

express car wash use. Therefore, the proposed project would not result in an inconsistency with the land use designation in either the County or City's General Plans. Therefore, the proposed project is consistent with the land use classification of the General Plan and would not be anticipated to exceed the AQMP assumptions for the project site and is found to be consistent with the AQMP for the second criterion.

Based on the above, the proposed project will not result in an inconsistency with the SCAQMD AQMP. Therefore, a less than significant impact will occur.

7.0 Greenhouse Gas Impact Analysis

7.1 Construction Greenhouse Gas Emissions Impact

The greenhouse gas emissions from project construction equipment and worker vehicles are shown in Table 12. The emissions are from all phases of construction. The total construction emissions amortized over a period of 30 years are estimated at 7.25 metric tons of CO₂e per year. Annual CalEEMod output calculations are provided in Appendix B.

A	Emissions (MTCO ₂ e) ¹					
Activity	Onsite	Offsite	Total			
Demolition	21.2	1.7	22.9			
Site Preparation	0.3	0.1	0.3			
Grading	2.5	0.1	2.6			
Building Construction	157.2	26.4	183.6			
Paving	5.9	0.6	6.5			
Coating	1.3	0.2	1.5			
Total	188.4	29.1	217.4			
Averaged over 30 years ²	6	1	7.25			

Table 12: Construction Greenhouse Gas Emissions

Notes:

^{1.} MTCO₂e=metric tons of carbon dioxide equivalents (includes carbon dioxide, methane and nitrous oxide).

². The emissions are averaged over 30 years because the average is added to the operational emissions, pursuant to SCAQMD.

* CalEEMod output (Appendix B)

7.2 Operational Greenhouse Gas Emissions Impact

Operational emissions occur over the life of the project. The operational emissions for the project are 767.04 metric tons of CO_2e per year as shown in Table 13. These emissions do not exceed the SCAQMD screening threshold of 3,000 metric tons of CO_2e per year. Therefore, the project's GHG emissions are considered to be less than significant.

<Table 13 next page>

		Greenhouse Gas Emissions (Metric Tons/Year) ¹					
Category	Bio-CO2	NonBio-CO ₂	CO ₂	CH4	N ₂ O	CO ₂ e	
Area Sources ²	0.00	0.00	0.00	0.00	0.00	0.00	
Energy Usage ³	0.00	27.01	27.01	0.00	0.00	27.12	
Mobile Sources ⁴	0.00	717.16	717.16	0.04	0.00	718.27	
Solid Waste ⁵	4.22	0.00	4.22	0.25	0.00	10.45	
Water ⁶	0.16	3.23	3.40	0.02	0.00	3.94	
Construction ⁷	0.00	7.21	7.21	0.00	0.00	7.25	
Total Emissions	4.38	754.61	758.99	0.31	0.00	767.04	
SCAQMD Draft Screening Threshold							
Exceeds Threshold?							
Netes							

Table 13: Opening Year Unmitigated Project-Related Greenhouse Gas Emissions

Notes:

¹ Source: CalEEMod Version 2016.3.2

² Area sources consist of GHG emissions from consumer products, architectural coatings, and landscape equipment.

³ Energy usage consist of GHG emissions from electricity and natural gas usage.

⁴ Mobile sources consist of GHG emissions from vehicles.

 $^{\rm 5}$ Solid waste includes the CO $_{\rm 2}$ and CH $_{\rm 4}$ emissions created from the solid waste placed in landfills.

⁶ Water includes GHG emissions from electricity used for transport of water and processing of wastewater.

⁷ Construction GHG emissions based on a 30 year amortization rate.

7.3 Greenhouse Gas Plan Consistency

The proposed project would have the potential to conflict with any applicable plan, policy or regulation of an agency adopted for the purpose of reducing the emissions of GHGs. As stated previously, the City of Lake Elsinore has adopted a Climate Action Plan; therefore, the project and its GHG emissions have been compared to the goals of the City of Lake Elsinore CAP.

Consistency with the City of Lake Elsinore CAP

The City of Lake Elsinore adopted the City of Lake Elsinore CAP, on December 13, 2011. The Climate Action Plan provides specific measures to be implemented in new developments to reduce GHG emissions as well as a GHG emissions reduction target based on a community-wide emissions reduction to 6.6 MTCO2e per service population per year by 2020 and 4.4 MTCO2e per service population per year by 2030.

Appendix D of the CAP contains a project level worksheet that an applicant may use to demonstrate consistency with the General Plan growth potential and CAP. The following are the criteria for determining consistency with the CAP:

1. Is the project consistent with the General Plan land use designation?

The City of Lake Elsinore Lake View District Land Use Plan identifies the land use classification of the proposed project site as General Commercial.

The proposed project is to develop the site with a commercial use, an express car wash. Therefore, the proposed project is anticipated to be consistent with the land use specified in the City of Lake Elsinore's General Plan. Therefore, the project meets this criterion.

2. Is the project consistent with the General Plan population and employment projections for the site, upon which the CAP modeling is based?

The City of Lake Elsinore General Plan's build-out of population, housing and employment have anticipated the development of the Project site as having a land use designation of General Commercial. This buildout projection was used in the preparation of the CAP. As shown in response to question 1 above, the proposed project is consistent with this land use designation. Therefore, as the proposed project is the development of the site with an express car wash use and is consistent with the existing General Plan land use designation for the site, the project meets this criterion.

3. Does the project incorporate the following CAP measures as binding and enforceable components of the project? Until these measures have been formally adopted by the City and incorporated in to applicable codes, the requirements must be incorporated as mitigation measures applicable to the project (CEQA Guidelines, Section 15183.5(b)(2)).

Table 14 provides a list of the reduction measures for new non-residential developments included in CAP Appendix D. Table 14 also provides a project consistency analysis of each measure. Per Table 14, the Project meets this criterion.

Based on the analysis above, the project will be consistent with the goals, policies and implementation programs contained in the adopted City of Lake Elsinore CAP.

Therefore, as the project would comply with the goals of the City of Lake Elsinore CAP, the project would not conflict with any applicable plan, policy or regulation of an agency adopted for the purpose of reducing the emissions of GHGs.

<Table 14, next page>

Table 14: City of Lake Elsinore GHG Reduction Measures for Commercial Developments and ProjectConsistency1

Local Measure	Measure Description	Project Consistency
T-1.2 Pedestrian Infrastructure	Through the development review process, require the installation of sidewalks along new and reconstructed streets. Also require new subdivisions and large developments to provide sidewalks or paths to internally link all uses where applicable and provide connections to neighborhood activity centers, major destinations, and transit facilities contiguous with the project site; implement through conditions of approval.	Consistent. The portion of Riverside Drive that lies adjacent to the project site already has an existing sidewalk, this sidewalk will remain with the development of the project site. Furthermore, the project does not proposed any new streets and is not considered a new subdivision or large development.
T-1.4 Bicycle Infrastructure	Through the development review process, require new development, as applicable, to implement and connect to the network of Class I, II and III bikeways, trails and safety features identified in the General Plan, Bike Lane Master Plan, Trails Master Plan and Western Riverside County Non-Motorized Transportation plan; implement through conditions of approval. The City will also continue to pursue and utilize funding when needed to implement portions of these plans.	Consistent. Per the Lake Elsinore General Plan Figure 2.5, Bikeway Plan, and Figure 2.6, Elsinore Area Trails System, the portion of Riverside Drive that lies adjacent to the project site is a Class II Bikeway and is part of the Lake Loop Trail. As can be seen on the project site plan, the proposed project site would not affect the bikeway or trail system.
T-1.5 Bicycle Parking	Through the development review process, enforce the following short-term and long-term bicycle parking standards for new non-residential development (consistent with 2010 California Green Building Code [CalGreen], Section 5.106.4), and implement through conditions of approval: <i>Short-Term Bicycle Parking:</i> If the project is anticipated to generate visitor traffic, provide permanently anchored bicycle racks within 200 feet of the visitor entrance, readily visible to passers- by, for 5% of visitor motorized vehicle parking capacity, with a minimum of one two-bike capacity rack. <i>Long-Term Bicycle Parking:</i> For buildings with over 10 tenant occupants, provide secure bicycle parking for 5% of tenant-occupied motorized vehicle parking capacity, with a minimum of one space.	Not Applicable. The proposed project is that of an express car wash.
T-2.1 Desginated Parking for Fuel-Efficient Vehicles	Amend the Municipal Code to require that new non- residential development designate 10% of total parking spaces for any combination of low-emitting, fuel-efficient and carpool/vanpool vehicles (consistent with CalGreen Tier 1, Sections A5.106.5.1 and A5.106.5.3), and implement through conditions of approval. Parking stalls shall be marked —Clean Air Vehicle.	Consistent. The proposed project includes only three parking spaces. The other 27 spaces are that of vacuum stalls. Therefore, as the project only includes three parking spaces, the proposed project is not required to designate stalls for clean air vehicles.

E-1.1 Tree Planting	Through the development review process, require new development to plant at minimum one 15-gallon nondeciduous, umbrella-form tree per 30 linear feet of boundary length near buildings, per the Municipal Code. Trees shall be planted in strategic locations around buildings or to shade pavement in parking lots and streets.	Consistent. This measure is implemented by the Departments of Planning, Public Works, and Parks and Recreation through City ordinance, development review process, and conditions of approval. The proposed project elements would be required to comply with the City ordinances and conditions of approval.
E-1.2 Cool Roof Requirements	Amend the City Municipal Code to require new non- residential development to use roofing materials having solar reflectance, thermal emittance or Solar Reflectance Index (SRI)3 consistent with CalGreen Tier 1 values (Table A5.106.11.2.1), and implement through conditions of approval.	Consistent. This measure is implemented by the Departments of Planning and Building through City ordinance, development review process, and conditions of approval. The proposed Project elements would be required to comply with the City ordinances and conditions of approval.
E-1.3 Energy Efficient Building Standards	Adopt an ordinance requiring that all new construction exceed the California Energy Code requirements, based on the 2008 Energy Efficiency Standards by 15% (consistent with CalGreen Tier 1), through either the performance based or prescriptive approach described in the California Green Building Code; implement through conditions of approval. Alternately, a solar photovoltaic system and/or solar water heating may be used to assist in meeting all or a portion of the 15% requirement.	Consistent. The California Green Building Standards Code (proposed Part 11, Title 24) was adopted as part of the California Building Standards Code in the CCR. Part 11 establishes voluntary standards, that are mandatory in the 2019 edition of the Code, on planning and design for sustainable site development, energy efficiency (in excess of the California Energy Code requirements), water conservation, material conservation, and internal air contaminants. The proposed project will be subject to these mandatory standards.
E-4.1 Landscaping	Through the development review process, enforce the City's Assembly Bill 1881 Landscaping Ordinance; implement through conditions of approval.	Consistent. AB 1881 Landscaping Ordinance requires that landscaping be water efficient, thereby consuming less energy and reducing emissions. The proposed project elements would be required to comply with these landscape requirements.
E-4.2 Indoor Water Conservation Requirements	Amend the City's Uniform Building Code to require development projects to reduce indoor water consumption by 30% (consistent with CalGreen Tier 1, Section A5.303.2.3.1), and implement through conditions of approval.	Consistent. The proposed project will utilize water fixtures that are sold in California that are required to meet CCR Title 20, Sections 1601 – 1608 that require all water fixtures to be low flow and provide an average water use reduction of 30%.
S-1.4 Construction and Demolition Waste Diversion	Amend the Municipal Code to require development projects to divert, recycle or salvage at least 65% of nonhazardous construction and demolition debris generated at the site by 2020 (consistent with CalGreen Tier 1, Section A5.408.3.1). Require all construction and demolition projects to be accompanied by a waste management plan for the project and a copy of the completed waste	Consistent. The California Green Building Standards Code (proposed Part 11, Title 24) was adopted as part of the California Building Standards Code in the CCR. Part 11 establishes voluntary standards, that are mandatory in the 2019 edition of the Code. Section 5.408 requires the recycling and/or salvaging for reuse of a

management report shall be provided upon completion.	minimum of 65 percent of the nonhazardous construction and demolition waste. The proposed project will be subject to these mandatory standards.
Notes: ¹ Source: City of Lake Elsinore Climate Action Plan	

8.0 References

The following references were used in the preparing this analysis.

California Air Pollution Control Officers Association

2009 Health Risk Assessments for Proposed Land Use Projects

California Air Resources Board

- 2008 Resolution 08-43
- 2008 Recommended Approaches for Setting Interim Significance Thresholds for Greenhouse Gases under the California Environmental Quality Act
- 2008 ARB Recommended Interim Risk Management Policy for Inhalation-Based Residential Cancer Risk – Frequently Asked Questions
- 2008 Climate Change Scoping Plan, a framework for change.
- 2011 Supplement to the AB 32 Scoping Plan Functional Equivalent Document
- 2013 Revised Emission Factors for Gasoline Marketing Operations at California Gasoline Dispensing Facilities
- 2014 First Update to the Climate Change Scoping Plan, Building on the Framework Pursuant to AB32, the California Global Warming Solutions Act of 2006. May.
- 2018 Historical Air Quality, Top 4 Summary

City of Lake Elsinore

- 2011 City of Lake Elsinore Climate Action Plan. December 13.
- 2011 City of Lake Elsinore General Plan. December 13.

Governor's Office of Planning and Research

- 2008 CEQA and Climate: Addressing Climate Change Through California Environmental Quality Act (CEQA) Review
- 2009 CEQA Guideline Sections to be Added or Amended

TJW Engineering

2021 Scoping Agreement for Traffic Impact Study Sunny Express Car Wash, City of Lake Elsinore, CA. January 26 (approved February 4, 2021).

Office of Environmental Health Hazard Assessment

2015 Air Toxics Hot Spots Program Risk Assessment Guidelines

South Coast Air Quality Management District

- 1993 CEQA Air Quality Handbook
- 2005 Rule 403 Fugitive Dust
- 2007 2007 Air Quality Management Plan
- 2008 Final Localized Significance Threshold Methodology, Revised
- 2011 Appendix A Calculation Details for CalEEMod
- 2012 Final 2012 Air Quality Management Plan
- 2016 Final 2016 Air Quality Management Plan

Appendix A:

CalEEMod Daily Emission Output

07402002 Sunny Express Car Wash

Riverside-South Coast County, Summer

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Other Asphalt Surfaces	0.93	Acre	0.93	40,510.80	0
Other Non-Asphalt Surfaces	8.98	1000sqft	0.21	8,978.00	0
Automobile Care Center	5.44	1000sqft	0.12	5,436.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.4	Precipitation Freq (Days)	28
Climate Zone	10			Operational Year	2022
Utility Company	Southern California Edisor	ı			
CO2 Intensity (Ib/MWhr)	702.44	CH4 Intensity (Ib/MWhr)	0.029	N2O Intensity (Ib/MWhr)	0.006

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use - ~1.26 ac to be developed w/ 5.436 TSF car wash, 8,978 sf landscaping, & remainder (~0.93 acres) paving (includes parking lot w/ 30 spaces including 27 vacuum spaces).

Construction Phase - Per project applicant, construction anticipated to being 7/19/21 and be complete by 2/19/22.

Off-road Equipment - Site prep of ~26% (~14,500 sf or 0.33 ac) of proposed area to be developed to remove existing asphalt surfaces; therefore, only ~26% of CalEEMod default site prep equipment needed.

Demolition - Demolition of two existing buildings totaling ~3,283 square feet.

Grading - Site anticipated to balance. Site prep of ~26% (~14,500 sf or 0.33 ac) of proposed developed area to remove existing asphalt surfaces.

Vehicle Trips - Per Traffic Scoping Agreement, 132.5 trips/TSF/day with incorporation of pass-by reduction. Pass-by trips changed to 0 & split between primary/diverted.

Sequestration -

Construction Off-road Equipment Mitigation - SCAQMD Rule 403 - Fugitive Dust.

Mobile Land Use Mitigation - Site is ~0.26 miles SW RTA Rte 8 stop Riverside/Lakeshore & ~2.6 miles NW of downtown portion of Lake Elsinore.

Energy Mitigation - 2019 Title 24 Standards for non-residential buildings will use ~30% less energy than with 2016 Title 24 Standards.

Water Mitigation -

Waste Mitigation - AB 341 requires each jurisdiction in CA divert at least 75% of their waste away from landfills by 2020.

Off-road Equipment - CalEEMod default construction timing for building construction reduced by ~37%; therefore, ~37% more equipment was added to CalEEMod default construction equipment list.

Table Name	Column Name	Default Value	New Value
tblConstDustMitigation	WaterUnpavedRoadVehicleSpeed	0	15
tblConstructionPhase	NumDays	200.00	125.00
tblConstructionPhase	PhaseEndDate	5/30/2022	2/14/2022
tblConstructionPhase	PhaseEndDate	6/13/2022	2/19/2022
tblConstructionPhase	PhaseEndDate	6/27/2022	2/19/2022
tblConstructionPhase	PhaseStartDate	5/31/2022	2/7/2022
tblConstructionPhase	PhaseStartDate	6/14/2022	2/7/2022
tblGrading	AcresOfGrading	0.00	0.33
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	2.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	2.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	2.00
tblTripsAndVMT	WorkerTripNumber	3.00	8.00
tblVehicleTrips	DV_TP	51.00	65.00
tblVehicleTrips	PB_TP	28.00	0.00
tblVehicleTrips	PR_TP	21.00	35.00
tblVehicleTrips	ST_TR	23.72	132.50
tblVehicleTrips	SU_TR	11.88	132.50
tblVehicleTrips	WD_TR	23.72	132.50

2.0 Emissions Summary

2.1 Overall Construction (Maximum Daily Emission)

Unmitigated Construction

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/d	day							lb/c	lay		
2021	2.4897	20.4742	17.9565	0.0346	5.0037	1.0423	5.6421	2.5493	0.9727	3.1367	0.0000	3,247.790 9	3,247.790 9	0.6251	0.0000	3,263.419 0
2022	9.8897	26.7568	28.8454	0.0529	0.5159	1.2723	1.7882	0.1381	1.2050	1.3432	0.0000	5,000.874 4	5,000.874 4	1.0488	0.0000	5,027.093 2
Maximum	9.8897	26.7568	28.8454	0.0529	5.0037	1.2723	5.6421	2.5493	1.2050	3.1367	0.0000	5,000.874 4	5,000.874 4	1.0488	0.0000	5,027.093 2

Mitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/	′day							lb/	day		
2021	2.4897	20.4742	17.9565	0.0346	2.0060	1.0423	2.6444	1.0087	0.9727	1.5961	0.0000	3,247.790 9	3,247.790 9	0.6251	0.0000	3,263.419 0
2022	9.8897	26.7568	28.8454	0.0529	0.5159	1.2723	1.7882	0.1381	1.2050	1.3432	0.0000	5,000.874 4	5,000.874 4	1.0488	0.0000	5,027.093 2
Maximum	9.8897	26.7568	28.8454	0.0529	2.0060	1.2723	2.6444	1.0087	1.2050	1.5961	0.0000	5,000.874 4	5,000.874 4	1.0488	0.0000	5,027.093 2
	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	54.31	0.00	40.34	57.33	0.00	34.39	0.00	0.00	0.00	0.00	0.00	0.00

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	lay		
Area	0.1429	1.0000e- 005	1.5700e- 003	0.0000		1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e- 005		3.3600e- 003	3.3600e- 003	1.0000e- 005		3.5800e- 003
Energy	5.2200e- 003	0.0474	0.0399	2.8000e- 004		3.6100e- 003	3.6100e- 003		3.6100e- 003	3.6100e- 003		56.9269	56.9269	1.0900e- 003	1.0400e- 003	57.2652
Mobile	1.1698	8.0653	10.5820	0.0449	3.1007	0.0289	3.1296	0.8296	0.0270	0.8566		4,595.439 6	4,595.439 6	0.2642		4,602.043 6
Total	1.3179	8.1128	10.6234	0.0452	3.1007	0.0325	3.1332	0.8296	0.0307	0.8602		4,652.369 8	4,652.369 8	0.2653	1.0400e- 003	4,659.312 4

Mitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Area	0.1429	1.0000e- 005	1.5700e- 003	0.0000		1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e- 005		3.3600e- 003	3.3600e- 003	1.0000e- 005		3.5800e- 003
Energy	4.4800e- 003	0.0407	0.0342	2.4000e- 004		3.0900e- 003	3.0900e- 003		3.0900e- 003	3.0900e- 003		48.8530	48.8530	9.4000e- 004	9.0000e- 004	49.1434
Mobile	1.0937	7.3642	8.2426	0.0343	2.1997	0.0218	2.2215	0.5885	0.0204	0.6089		3,509.421 2	3,509.421 2	0.2351		3,515.298 7
Total	1.2410	7.4049	8.2784	0.0345	2.1997	0.0249	2.2246	0.5885	0.0235	0.6120		3,558.277 6	3,558.277 6	0.2361	9.0000e- 004	3,564.445 7

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	5.83	8.73	22.07	23.71	29.06	23.42	29.00	29.06	23.39	28.86	0.00	23.52	23.52	11.01	13.46	23.50

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Demolition	Demolition	7/19/2021	8/13/2021	5	20	
2	Site Preparation	Site Preparation	8/14/2021	8/17/2021	5	2	
3	Grading	Grading	8/18/2021	8/23/2021	5	4	
4	Building Construction	Building Construction	8/24/2021	2/14/2022	5	125	
5	Paving	Paving	2/7/2022	2/19/2022	5	10	
6	Architectural Coating	Architectural Coating	2/7/2022	2/19/2022	5	10	

Acres of Grading (Site Preparation Phase): 0.33

Acres of Grading (Grading Phase): 1.5

Acres of Paving: 1.14

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 8,154; Non-Residential Outdoor: 2,718; Striped Parking Area: 2,969 (Architectural Coating – sqft)

OffRoad Equipment

07402002 Sunny Ex	press Car Wash	 Riverside-South 	Coast County, Summer

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Demolition	Concrete/Industrial Saws	1	8.00	81	0.73
Demolition	Rubber Tired Dozers	1	8.00	247	0.40
Demolition	Tractors/Loaders/Backhoes	3	8.00	97	0.37
Site Preparation	Graders	0	8.00	187	0.41
Site Preparation	Rubber Tired Dozers	0	7.00	247	0.40
Site Preparation	Tractors/Loaders/Backhoes	1	8.00	97	0.37
Grading	Graders	1	6.00	187	0.41
Grading	Rubber Tired Dozers	1	6.00	247	0.40
Grading	Tractors/Loaders/Backhoes	1	7.00	97	0.37
Building Construction	Cranes	2	6.00	231	0.29
Building Construction	Forklifts	2	6.00	89	0.20
Building Construction	Generator Sets	1	8.00	84	0.74
Building Construction	Tractors/Loaders/Backhoes	2	6.00	97	0.37
Building Construction	Welders	3	8.00	46	0.45
Paving	Cement and Mortar Mixers	1	6.00	9	0.56
Paving	Pavers	1	6.00	130	0.42
Paving	Paving Equipment	1	8.00	132	0.36
Paving	Rollers	1	7.00	80	0.38
Paving	Tractors/Loaders/Backhoes	1	8.00	97	0.37
Architectural Coating	Air Compressors	1	6.00	78	0.48

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Demolition	5	13.00	0.00	15.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Site Preparation	1	8.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Grading	3	8.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Building Construction	10	23.00	9.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Paving	5	13.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Architectural Coating	1	5.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

Water Exposed Area

Reduce Vehicle Speed on Unpaved Roads

3.2 Demolition - 2021

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	day		
Fugitive Dust					0.1626	0.0000	0.1626	0.0246	0.0000	0.0246			0.0000			0.0000
Off-Road	1.9930	19.6966	14.4925	0.0241		1.0409	1.0409		0.9715	0.9715		2,322.717 1	2,322.717 1	0.5940		2,337.565 8
Total	1.9930	19.6966	14.4925	0.0241	0.1626	1.0409	1.2035	0.0246	0.9715	0.9961		2,322.717 1	2,322.717 1	0.5940		2,337.565 8

3.2 Demolition - 2021

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day				lb/c	lay					
Hauling	3.6500e- 003	0.1630	0.0214	5.6000e- 004	0.0131	5.0000e- 004	0.0136	3.6000e- 003	4.7000e- 004	4.0700e- 003		59.9501	59.9501	3.4800e- 003		60.0372
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	,,,,,,,	0.0000
Worker	0.0616	0.0351	0.4806	1.3900e- 003	0.1453	8.6000e- 004	0.1462	0.0385	7.9000e- 004	0.0393		138.4176	138.4176	3.3000e- 003		138.5001
Total	0.0653	0.1981	0.5021	1.9500e- 003	0.1584	1.3600e- 003	0.1598	0.0421	1.2600e- 003	0.0434		198.3678	198.3678	6.7800e- 003		198.5373

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/c	lay		
Fugitive Dust					0.0634	0.0000	0.0634	9.6000e- 003	0.0000	9.6000e- 003			0.0000			0.0000
Off-Road	1.9930	19.6966	14.4925	0.0241		1.0409	1.0409		0.9715	0.9715	0.0000	2,322.717 1	2,322.717 1	0.5940		2,337.565 8
Total	1.9930	19.6966	14.4925	0.0241	0.0634	1.0409	1.1043	9.6000e- 003	0.9715	0.9811	0.0000	2,322.717 1	2,322.717 1	0.5940		2,337.565 8

3.2 Demolition - 2021

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Hauling	3.6500e- 003	0.1630	0.0214	5.6000e- 004	0.0131	5.0000e- 004	0.0136	3.6000e- 003	4.7000e- 004	4.0700e- 003		59.9501	59.9501	3.4800e- 003		60.0372
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0616	0.0351	0.4806	1.3900e- 003	0.1453	8.6000e- 004	0.1462	0.0385	7.9000e- 004	0.0393		138.4176	138.4176	3.3000e- 003		138.5001
Total	0.0653	0.1981	0.5021	1.9500e- 003	0.1584	1.3600e- 003	0.1598	0.0421	1.2600e- 003	0.0434		198.3678	198.3678	6.7800e- 003		198.5373

3.3 Site Preparation - 2021

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Fugitive Dust					0.1750	0.0000	0.1750	0.0189	0.0000	0.0189			0.0000			0.0000
Off-Road	0.1873	1.8958	2.2602	3.1100e- 003		0.1118	0.1118		0.1028	0.1028		300.9001	300.9001	0.0973		303.3330
Total	0.1873	1.8958	2.2602	3.1100e- 003	0.1750	0.1118	0.2868	0.0189	0.1028	0.1217		300.9001	300.9001	0.0973		303.3330

Page 11 of 28

07402002 Sunny Express Car Wash - Riverside-South Coast County, Summer

3.3 Site Preparation - 2021

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day				lb/c	lay					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0379	0.0216	0.2958	8.5000e- 004	0.0894	5.3000e- 004	0.0900	0.0237	4.9000e- 004	0.0242		85.1801	85.1801	2.0300e- 003		85.2309
Total	0.0379	0.0216	0.2958	8.5000e- 004	0.0894	5.3000e- 004	0.0900	0.0237	4.9000e- 004	0.0242		85.1801	85.1801	2.0300e- 003		85.2309

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Fugitive Dust					0.0682	0.0000	0.0682	7.3700e- 003	0.0000	7.3700e- 003			0.0000			0.0000
Off-Road	0.1873	1.8958	2.2602	3.1100e- 003		0.1118	0.1118		0.1028	0.1028	0.0000	300.9001	300.9001	0.0973		303.3330
Total	0.1873	1.8958	2.2602	3.1100e- 003	0.0682	0.1118	0.1800	7.3700e- 003	0.1028	0.1102	0.0000	300.9001	300.9001	0.0973		303.3330

3.3 Site Preparation - 2021

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day					lb/c	lay				
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0379	0.0216	0.2958	8.5000e- 004	0.0894	5.3000e- 004	0.0900	0.0237	4.9000e- 004	0.0242		85.1801	85.1801	2.0300e- 003		85.2309
Total	0.0379	0.0216	0.2958	8.5000e- 004	0.0894	5.3000e- 004	0.0900	0.0237	4.9000e- 004	0.0242		85.1801	85.1801	2.0300e- 003		85.2309

3.4 Grading - 2021

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Fugitive Dust					4.9143	0.0000	4.9143	2.5256	0.0000	2.5256			0.0000			0.0000
Off-Road	1.2884	14.3307	6.3314	0.0141		0.6379	0.6379		0.5869	0.5869		1,365.064 8	1,365.064 8	0.4415		1,376.102 0
Total	1.2884	14.3307	6.3314	0.0141	4.9143	0.6379	5.5522	2.5256	0.5869	3.1125		1,365.064 8	1,365.064 8	0.4415		1,376.102 0

3.4 Grading - 2021

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day					lb/c	lay				
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0379	0.0216	0.2958	8.5000e- 004	0.0894	5.3000e- 004	0.0900	0.0237	4.9000e- 004	0.0242		85.1801	85.1801	2.0300e- 003		85.2309
Total	0.0379	0.0216	0.2958	8.5000e- 004	0.0894	5.3000e- 004	0.0900	0.0237	4.9000e- 004	0.0242		85.1801	85.1801	2.0300e- 003		85.2309

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Fugitive Dust					1.9166	0.0000	1.9166	0.9850	0.0000	0.9850		- - - - -	0.0000			0.0000
Off-Road	1.2884	14.3307	6.3314	0.0141		0.6379	0.6379		0.5869	0.5869	0.0000	1,365.064 8	1,365.064 8	0.4415		1,376.102 0
Total	1.2884	14.3307	6.3314	0.0141	1.9166	0.6379	2.5545	0.9850	0.5869	1.5719	0.0000	1,365.064 8	1,365.064 8	0.4415		1,376.102 0

Page 14 of 28

07402002 Sunny Express Car Wash - Riverside-South Coast County, Summer

3.4 Grading - 2021

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0379	0.0216	0.2958	8.5000e- 004	0.0894	5.3000e- 004	0.0900	0.0237	4.9000e- 004	0.0242		85.1801	85.1801	2.0300e- 003		85.2309
Total	0.0379	0.0216	0.2958	8.5000e- 004	0.0894	5.3000e- 004	0.0900	0.0237	4.9000e- 004	0.0242		85.1801	85.1801	2.0300e- 003		85.2309

3.5 Building Construction - 2021

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Off-Road	2.3596	19.5793	16.9576	0.0299		0.9786	0.9786		0.9315	0.9315		2,756.972 3	2,756.972 3	0.6017		2,772.014 6
Total	2.3596	19.5793	16.9576	0.0299		0.9786	0.9786		0.9315	0.9315		2,756.972 3	2,756.972 3	0.6017		2,772.014 6

3.5 Building Construction - 2021

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0210	0.8329	0.1486	2.3300e- 003	0.0576	1.5800e- 003	0.0592	0.0166	1.5200e- 003	0.0181		245.9259	245.9259	0.0176		246.3658
Worker	0.1090	0.0621	0.8503	2.4600e- 003	0.2571	1.5100e- 003	0.2586	0.0682	1.3900e- 003	0.0696		244.8927	244.8927	5.8400e- 003		245.0387
Total	0.1301	0.8950	0.9989	4.7900e- 003	0.3147	3.0900e- 003	0.3178	0.0848	2.9100e- 003	0.0877		490.8186	490.8186	0.0234		491.4045

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	day		
Off-Road	2.3596	19.5793	16.9576	0.0299		0.9786	0.9786		0.9315	0.9315	0.0000	2,756.972 3	2,756.972 3	0.6017		2,772.014 6
Total	2.3596	19.5793	16.9576	0.0299		0.9786	0.9786		0.9315	0.9315	0.0000	2,756.972 3	2,756.972 3	0.6017		2,772.014 6

Page 16 of 28

07402002 Sunny Express Car Wash - Riverside-South Coast County, Summer

3.5 Building Construction - 2021

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0210	0.8329	0.1486	2.3300e- 003	0.0576	1.5800e- 003	0.0592	0.0166	1.5200e- 003	0.0181		245.9259	245.9259	0.0176		246.3658
Worker	0.1090	0.0621	0.8503	2.4600e- 003	0.2571	1.5100e- 003	0.2586	0.0682	1.3900e- 003	0.0696		244.8927	244.8927	5.8400e- 003		245.0387
Total	0.1301	0.8950	0.9989	4.7900e- 003	0.3147	3.0900e- 003	0.3178	0.0848	2.9100e- 003	0.0877		490.8186	490.8186	0.0234		491.4045

3.5 Building Construction - 2022

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	day		
Off-Road	2.1371	17.6892	16.6895	0.0299		0.8392	0.8392	- 	0.7991	0.7991		2,757.618 0	2,757.618 0	0.5931		2,772.446 4
Total	2.1371	17.6892	16.6895	0.0299		0.8392	0.8392		0.7991	0.7991		2,757.618 0	2,757.618 0	0.5931		2,772.446 4

3.5 Building Construction - 2022

Unmitigated Construction Off-Site

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0196	0.7858	0.1382	2.3100e- 003	0.0576	1.3300e- 003	0.0590	0.0166	1.2700e- 003	0.0179		243.8327	243.8327	0.0167		244.2492
Worker	0.1020	0.0559	0.7843	2.3700e- 003	0.2571	1.4700e- 003	0.2586	0.0682	1.3600e- 003	0.0695		235.9446	235.9446	5.2500e- 003		236.0757
Total	0.1216	0.8417	0.9225	4.6800e- 003	0.3147	2.8000e- 003	0.3175	0.0848	2.6300e- 003	0.0874		479.7773	479.7773	0.0219		480.3249

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	day		
Off-Road	2.1371	17.6892	16.6895	0.0299		0.8392	0.8392	1 1 1	0.7991	0.7991	0.0000	2,757.617 9	2,757.617 9	0.5931		2,772.446 4
Total	2.1371	17.6892	16.6895	0.0299		0.8392	0.8392		0.7991	0.7991	0.0000	2,757.617 9	2,757.617 9	0.5931		2,772.446 4

Page 18 of 28

07402002 Sunny Express Car Wash - Riverside-South Coast County, Summer

3.5 Building Construction - 2022

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0196	0.7858	0.1382	2.3100e- 003	0.0576	1.3300e- 003	0.0590	0.0166	1.2700e- 003	0.0179		243.8327	243.8327	0.0167		244.2492
Worker	0.1020	0.0559	0.7843	2.3700e- 003	0.2571	1.4700e- 003	0.2586	0.0682	1.3600e- 003	0.0695		235.9446	235.9446	5.2500e- 003		236.0757
Total	0.1216	0.8417	0.9225	4.6800e- 003	0.3147	2.8000e- 003	0.3175	0.0848	2.6300e- 003	0.0874		479.7773	479.7773	0.0219		480.3249

3.6 Paving - 2022

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Off-Road	0.6877	6.7738	8.8060	0.0135		0.3474	0.3474		0.3205	0.3205		1,297.378 9	1,297.378 9	0.4113		1,307.660 8
Paving	0.2437					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	0.9313	6.7738	8.8060	0.0135		0.3474	0.3474		0.3205	0.3205		1,297.378 9	1,297.378 9	0.4113		1,307.660 8

3.6 Paving - 2022

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0577	0.0316	0.4433	1.3400e- 003	0.1453	8.3000e- 004	0.1461	0.0385	7.7000e- 004	0.0393		133.3600	133.3600	2.9600e- 003		133.4341
Total	0.0577	0.0316	0.4433	1.3400e- 003	0.1453	8.3000e- 004	0.1461	0.0385	7.7000e- 004	0.0393		133.3600	133.3600	2.9600e- 003		133.4341

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	day		
Off-Road	0.6877	6.7738	8.8060	0.0135		0.3474	0.3474		0.3205	0.3205	0.0000	1,297.378 9	1,297.378 9	0.4113		1,307.660 8
Paving	0.2437					0.0000	0.0000		0.0000	0.0000		,	0.0000			0.0000
Total	0.9313	6.7738	8.8060	0.0135		0.3474	0.3474		0.3205	0.3205	0.0000	1,297.378 9	1,297.378 9	0.4113		1,307.660 8

3.6 Paving - 2022

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0577	0.0316	0.4433	1.3400e- 003	0.1453	8.3000e- 004	0.1461	0.0385	7.7000e- 004	0.0393		133.3600	133.3600	2.9600e- 003		133.4341
Total	0.0577	0.0316	0.4433	1.3400e- 003	0.1453	8.3000e- 004	0.1461	0.0385	7.7000e- 004	0.0393		133.3600	133.3600	2.9600e- 003		133.4341

3.7 Architectural Coating - 2022

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Archit. Coating	6.4153					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	0.2045	1.4085	1.8136	2.9700e- 003		0.0817	0.0817		0.0817	0.0817		281.4481	281.4481	0.0183		281.9062
Total	6.6198	1.4085	1.8136	2.9700e- 003		0.0817	0.0817		0.0817	0.0817		281.4481	281.4481	0.0183		281.9062

3.7 Architectural Coating - 2022

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0222	0.0122	0.1705	5.1000e- 004	0.0559	3.2000e- 004	0.0562	0.0148	3.0000e- 004	0.0151		51.2923	51.2923	1.1400e- 003		51.3208
Total	0.0222	0.0122	0.1705	5.1000e- 004	0.0559	3.2000e- 004	0.0562	0.0148	3.0000e- 004	0.0151		51.2923	51.2923	1.1400e- 003		51.3208

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Archit. Coating	6.4153					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	0.2045	1.4085	1.8136	2.9700e- 003		0.0817	0.0817		0.0817	0.0817	0.0000	281.4481	281.4481	0.0183		281.9062
Total	6.6198	1.4085	1.8136	2.9700e- 003		0.0817	0.0817		0.0817	0.0817	0.0000	281.4481	281.4481	0.0183		281.9062

3.7 Architectural Coating - 2022

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0222	0.0122	0.1705	5.1000e- 004	0.0559	3.2000e- 004	0.0562	0.0148	3.0000e- 004	0.0151		51.2923	51.2923	1.1400e- 003		51.3208
Total	0.0222	0.0122	0.1705	5.1000e- 004	0.0559	3.2000e- 004	0.0562	0.0148	3.0000e- 004	0.0151		51.2923	51.2923	1.1400e- 003		51.3208

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

Improve Destination Accessibility

Increase Transit Accessibility

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Mitigated	1.0937	7.3642	8.2426	0.0343	2.1997	0.0218	2.2215	0.5885	0.0204	0.6089		3,509.421 2	3,509.421 2	0.2351		3,515.298 7
Unmitigated	1.1698	8.0653	10.5820	0.0449	3.1007	0.0289	3.1296	0.8296	0.0270	0.8566		4,595.439 6	4,595.439 6	0.2642		4,602.043 6

4.2 Trip Summary Information

	Ave	rage Daily Trip Ra	ate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Automobile Care Center	720.27	720.27	720.27	1,453,978	1,031,482
Other Asphalt Surfaces	0.00	0.00	0.00		
Other Non-Asphalt Surfaces	0.00	0.00	0.00		
Total	720.27	720.27	720.27	1,453,978	1,031,482

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Automobile Care Center	16.60	8.40	6.90	33.00	48.00	19.00	35	65	0
Other Asphalt Surfaces	16.60	8.40	6.90	0.00	0.00	0.00	0	0	0
Other Non-Asphalt Surfaces	16.60	8.40	6.90	0.00	0.00	0.00	0	0	0

4.4 Fleet Mix

Page 24 of 28

07402002 Sunny Express Car Wash - Riverside-South Coast County, Summer

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Automobile Care Center	0.545527	0.036856	0.186032	0.115338	0.015222	0.004970	0.017525	0.069528	0.001397	0.001160	0.004547	0.000932	0.000965
Other Asphalt Surfaces	0.545527	0.036856	0.186032	0.115338	0.015222	0.004970	0.017525	0.069528	0.001397	0.001160	0.004547	0.000932	0.000965
Other Non-Asphalt Surfaces	0.545527	0.036856	0.186032	0.115338	0.015222	0.004970	0.017525	0.069528	0.001397	0.001160	0.004547	0.000932	0.000965

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

Exceed Title 24

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/d	day		
NaturalGas Mitigated	4.4800e- 003	0.0407	0.0342	2.4000e- 004		3.0900e- 003	3.0900e- 003		3.0900e- 003	3.0900e- 003		48.8530	48.8530	9.4000e- 004	9.0000e- 004	49.1434
NaturalGas Unmitigated	5.2200e- 003	0.0474	0.0399	2.8000e- 004		3.6100e- 003	3.6100e- 003		3.6100e- 003	3.6100e- 003		56.9269	56.9269	1.0900e- 003	1.0400e- 003	57.2652

5.2 Energy by Land Use - NaturalGas

<u>Unmitigated</u>

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/d	day							lb/d	day		
Automobile Care Center	483.878	5.2200e- 003	0.0474	0.0399	2.8000e- 004		3.6100e- 003	3.6100e- 003		3.6100e- 003	3.6100e- 003		56.9269	56.9269	1.0900e- 003	1.0400e- 003	57.2652
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000	,,,,,,,	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Other Non- Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total		5.2200e- 003	0.0474	0.0399	2.8000e- 004		3.6100e- 003	3.6100e- 003		3.6100e- 003	3.6100e- 003		56.9269	56.9269	1.0900e- 003	1.0400e- 003	57.2652

Mitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/o	day							lb/c	lay		
Automobile Care Center	0.415251	4.4800e- 003	0.0407	0.0342	2.4000e- 004		3.0900e- 003	3.0900e- 003		3.0900e- 003	3.0900e- 003		48.8530	48.8530	9.4000e- 004	9.0000e- 004	49.1434
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Other Non- Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total		4.4800e- 003	0.0407	0.0342	2.4000e- 004		3.0900e- 003	3.0900e- 003		3.0900e- 003	3.0900e- 003		48.8530	48.8530	9.4000e- 004	9.0000e- 004	49.1434

6.0 Area Detail

6.1 Mitigation Measures Area

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/d	day		
Mitigated	0.1429	1.0000e- 005	1.5700e- 003	0.0000		1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e- 005		3.3600e- 003	3.3600e- 003	1.0000e- 005		3.5800e- 003
Unmitigated	0.1429	1.0000e- 005	1.5700e- 003	0.0000		1.0000e- 005	1.0000e- 005	 - - - -	1.0000e- 005	1.0000e- 005		3.3600e- 003	3.3600e- 003	1.0000e- 005		3.5800e- 003

6.2 Area by SubCategory

Unmitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/o	day							lb/d	day		
Architectural Coating	0.0176					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	0.1252					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	1.5000e- 004	1.0000e- 005	1.5700e- 003	0.0000		1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e- 005		3.3600e- 003	3.3600e- 003	1.0000e- 005		3.5800e- 003
Total	0.1429	1.0000e- 005	1.5700e- 003	0.0000		1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e- 005		3.3600e- 003	3.3600e- 003	1.0000e- 005		3.5800e- 003

Page 27 of 28

07402002 Sunny Express Car Wash - Riverside-South Coast County, Summer

6.2 Area by SubCategory

Mitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/e	day							lb/d	lay		
Architectural Coating	0.0176					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
	0.1252		,			0.0000	0.0000	, , , , ,	0.0000	0.0000			0.0000			0.0000
Landscaping	1.5000e- 004	1.0000e- 005	1.5700e- 003	0.0000		1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e- 005		3.3600e- 003	3.3600e- 003	1.0000e- 005		3.5800e- 003
Total	0.1429	1.0000e- 005	1.5700e- 003	0.0000		1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e- 005		3.3600e- 003	3.3600e- 003	1.0000e- 005		3.5800e- 003

7.0 Water Detail

7.1 Mitigation Measures Water

8.0 Waste Detail

8.1 Mitigation Measures Waste

Institute Recycling and Composting Services

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type
<u>Boilers</u>						
Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type	
User Defined Equipment						
Equipment Type	Number					

11.0 Vegetation

07402002 Sunny Express Car Wash

Riverside-South Coast County, Winter

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Other Asphalt Surfaces	0.93	Acre	0.93	40,510.80	0
Other Non-Asphalt Surfaces	8.98	1000sqft	0.21	8,978.00	0
Automobile Care Center	5.44	1000sqft	0.12	5,436.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.4	Precipitation Freq (Days)	28
Climate Zone	10			Operational Year	2022
Utility Company	Southern California Edisor	n			
CO2 Intensity (Ib/MWhr)	702.44	CH4 Intensity (Ib/MWhr)	0.029	N2O Intensity (Ib/MWhr)	0.006

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use - ~1.26 ac to be developed w/ 5.436 TSF car wash, 8,978 sf landscaping, & remainder (~0.93 acres) paving (includes parking lot w/ 30 spaces including 27 vacuum spaces).

Construction Phase - Per project applicant, construction anticipated to being 7/19/21 and be complete by 2/19/22.

Off-road Equipment - Site prep of ~26% (~14,500 sf or 0.33 ac) of proposed area to be developed to remove existing asphalt surfaces; therefore, only ~26% of CalEEMod default site prep equipment needed.

Demolition - Demolition of two existing buildings totaling ~3,283 square feet.

Grading - Site anticipated to balance. Site prep of ~26% (~14,500 sf or 0.33 ac) of proposed developed area to remove existing asphalt surfaces.

Vehicle Trips - Per Traffic Scoping Agreement, 132.5 trips/TSF/day with incorporation of pass-by reduction. Pass-by trips changed to 0 & split between primary/diverted.

Sequestration -

Construction Off-road Equipment Mitigation - SCAQMD Rule 403 - Fugitive Dust.

Mobile Land Use Mitigation - Site is ~0.26 miles SW RTA Rte 8 stop Riverside/Lakeshore & ~2.6 miles NW of downtown portion of Lake Elsinore.

Energy Mitigation - 2019 Title 24 Standards for non-residential buildings will use ~30% less energy than with 2016 Title 24 Standards.

Water Mitigation -

Waste Mitigation - AB 341 requires each jurisdiction in CA divert at least 75% of their waste away from landfills by 2020.

Off-road Equipment - CalEEMod default construction timing for building construction reduced by ~37%; therefore, ~37% more equipment was added to CalEEMod default construction equipment list.

Table Name	Column Name	Default Value	New Value
tblConstDustMitigation	WaterUnpavedRoadVehicleSpeed	0	15
tblConstructionPhase	NumDays	200.00	125.00
tblConstructionPhase	PhaseEndDate	5/30/2022	2/14/2022
tblConstructionPhase	PhaseEndDate	6/13/2022	2/19/2022
tblConstructionPhase	PhaseEndDate	6/27/2022	2/19/2022
tblConstructionPhase	PhaseStartDate	5/31/2022	2/7/2022
tblConstructionPhase	PhaseStartDate	6/14/2022	2/7/2022
tblGrading	AcresOfGrading	0.00	0.33
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	2.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	2.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	2.00
tblTripsAndVMT	WorkerTripNumber	3.00	8.00
tblVehicleTrips	DV_TP	51.00	65.00
tblVehicleTrips	PB_TP	28.00	0.00
tblVehicleTrips	PR_TP	21.00	35.00
tblVehicleTrips	ST_TR	23.72	132.50
tblVehicleTrips	SU_TR	11.88	132.50
tblVehicleTrips	WD_TR	23.72	132.50

2.0 Emissions Summary

2.1 Overall Construction (Maximum Daily Emission)

Unmitigated Construction

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/e	day							lb/c	lay		
2021	2.4890	20.4692	17.8198	0.0343	5.0037	1.0423	5.6421	2.5493	0.9727	3.1367	0.0000	3,213.342 7	3,213.342 7	0.6264	0.0000	3,229.002 0
2022	9.8881	26.7523	28.6000	0.0524	0.5159	1.2723	1.7882	0.1381	1.2051	1.3432	0.0000	4,948.393 2	4,948.393 2	1.0495	0.0000	4,974.629 8
Maximum	9.8881	26.7523	28.6000	0.0524	5.0037	1.2723	5.6421	2.5493	1.2051	3.1367	0.0000	4,948.393 2	4,948.393 2	1.0495	0.0000	4,974.629 8

Mitigated Construction

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/	′day							lb/	day		
2021	2.4890	20.4692	17.8198	0.0343	2.0060	1.0423	2.6444	1.0087	0.9727	1.5961	0.0000	3,213.342 7	3,213.342 7	0.6264	0.0000	3,229.002 0
2022	9.8881	26.7523	28.6000	0.0524	0.5159	1.2723	1.7882	0.1381	1.2051	1.3432	0.0000	4,948.393 2	4,948.393 2	1.0495	0.0000	4,974.629 8
Maximum	9.8881	26.7523	28.6000	0.0524	2.0060	1.2723	2.6444	1.0087	1.2051	1.5961	0.0000	4,948.393 2	4,948.393 2	1.0495	0.0000	4,974.629 8
	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	54.31	0.00	40.34	57.33	0.00	34.39	0.00	0.00	0.00	0.00	0.00	0.00

Page 5 of 28

07402002 Sunny Express Car Wash - Riverside-South Coast County, Winter

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	lay		
Area	0.1429	1.0000e- 005	1.5700e- 003	0.0000		1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e- 005		3.3600e- 003	3.3600e- 003	1.0000e- 005		3.5800e- 003
Energy	5.2200e- 003	0.0474	0.0399	2.8000e- 004		3.6100e- 003	3.6100e- 003		3.6100e- 003	3.6100e- 003		56.9269	56.9269	1.0900e- 003	1.0400e- 003	57.2652
Mobile	0.9769	7.9800	9.5093	0.0413	3.1007	0.0293	3.1300	0.8296	0.0275	0.8571		4,231.348 5	4,231.348 5	0.2800		4,238.347 2
Total	1.1250	8.0275	9.5507	0.0416	3.1007	0.0330	3.1337	0.8296	0.0311	0.8607		4,288.278 8	4,288.278 8	0.2811	1.0400e- 003	4,295.616 0

Mitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Area	0.1429	1.0000e- 005	1.5700e- 003	0.0000		1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e- 005		3.3600e- 003	3.3600e- 003	1.0000e- 005		3.5800e- 003
Energy	4.4800e- 003	0.0407	0.0342	2.4000e- 004		3.0900e- 003	3.0900e- 003		3.0900e- 003	3.0900e- 003		48.8530	48.8530	9.4000e- 004	9.0000e- 004	49.1434
Mobile	0.9057	7.2443	7.6406	0.0314	2.1997	0.0222	2.2220	0.5885	0.0208	0.6093		3,221.760 0	3,221.760 0	0.2529		3,228.083 3
Total	1.0531	7.2850	7.6764	0.0317	2.1997	0.0253	2.2251	0.5885	0.0239	0.6124		3,270.616 4	3,270.616 4	0.2539	9.0000e- 004	3,277.230 2

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	6.39	9.25	19.62	23.91	29.06	23.10	29.00	29.06	23.06	28.84	0.00	23.73	23.73	9.67	13.46	23.71

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Demolition	Demolition	7/19/2021	8/13/2021	5	20	
2	Site Preparation	Site Preparation	8/14/2021	8/17/2021	5	2	
3	Grading	Grading	8/18/2021	8/23/2021	5	4	
4	Building Construction	Building Construction	8/24/2021	2/14/2022	5	125	
5	Paving	Paving	2/7/2022	2/19/2022	5	10	
6	Architectural Coating	Architectural Coating	2/7/2022	2/19/2022	5	10	

Acres of Grading (Site Preparation Phase): 0.33

Acres of Grading (Grading Phase): 1.5

Acres of Paving: 1.14

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 8,154; Non-Residential Outdoor: 2,718; Striped Parking Area: 2,969 (Architectural Coating – sqft)

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Demolition	Concrete/Industrial Saws	1	8.00	81	0.73
Demolition	Rubber Tired Dozers	1	8.00	247	0.40
Demolition	Tractors/Loaders/Backhoes	3	8.00	97	0.37
Site Preparation	Graders	0	8.00	187	0.41
Site Preparation	Rubber Tired Dozers	0	7.00	247	0.40
Site Preparation	Tractors/Loaders/Backhoes	1	8.00	97	0.37
Grading	Graders	1	6.00	187	0.41
Grading	Rubber Tired Dozers	1	6.00	247	0.40
Grading	Tractors/Loaders/Backhoes	1	7.00	97	0.37
Building Construction	Cranes	2	6.00	231	0.29
Building Construction	Forklifts	2	6.00	89	0.20
Building Construction	Generator Sets	1	8.00	84	0.74
Building Construction	Tractors/Loaders/Backhoes	2	6.00	97	0.37
Building Construction	Welders	3	8.00	46	0.45
Paving	Cement and Mortar Mixers	1	6.00	9	0.56
Paving	Pavers	1	6.00	130	0.42
Paving	Paving Equipment	1	8.00	132	0.36
Paving	Rollers	1	7.00	80	0.38
Paving	Tractors/Loaders/Backhoes	1	8.00	97	0.37
Architectural Coating	Air Compressors	1	6.00	78	0.48

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Demolition	5	13.00	0.00	15.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Site Preparation	1	8.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Grading	3	8.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Building Construction	10	23.00	9.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Paving	5	13.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Architectural Coating	1	5.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

Water Exposed Area

Reduce Vehicle Speed on Unpaved Roads

3.2 Demolition - 2021

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Fugitive Dust					0.1626	0.0000	0.1626	0.0246	0.0000	0.0246			0.0000			0.0000
Off-Road	1.9930	19.6966	14.4925	0.0241		1.0409	1.0409		0.9715	0.9715		2,322.717 1	2,322.717 1	0.5940		2,337.565 8
Total	1.9930	19.6966	14.4925	0.0241	0.1626	1.0409	1.2035	0.0246	0.9715	0.9961		2,322.717 1	2,322.717 1	0.5940		2,337.565 8

3.2 Demolition - 2021

Unmitigated Construction Off-Site

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Hauling	3.8400e- 003	0.1641	0.0250	5.5000e- 004	0.0131	5.0000e- 004	0.0136	3.6000e- 003	4.8000e- 004	4.0800e- 003		58.4439	58.4439	3.8100e- 003		58.5391
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0605	0.0363	0.3880	1.2500e- 003	0.1453	8.6000e- 004	0.1462	0.0385	7.9000e- 004	0.0393		124.1752	124.1752	2.8700e- 003		124.2469
Total	0.0643	0.2004	0.4130	1.8000e- 003	0.1584	1.3600e- 003	0.1598	0.0421	1.2700e- 003	0.0434		182.6191	182.6191	6.6800e- 003		182.7860

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/c	lay		
Fugitive Dust					0.0634	0.0000	0.0634	9.6000e- 003	0.0000	9.6000e- 003			0.0000			0.0000
Off-Road	1.9930	19.6966	14.4925	0.0241		1.0409	1.0409		0.9715	0.9715	0.0000	2,322.717 1	2,322.717 1	0.5940		2,337.565 8
Total	1.9930	19.6966	14.4925	0.0241	0.0634	1.0409	1.1043	9.6000e- 003	0.9715	0.9811	0.0000	2,322.717 1	2,322.717 1	0.5940		2,337.565 8

Page 10 of 28

07402002 Sunny Express Car Wash - Riverside-South Coast County, Winter

3.2 Demolition - 2021

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Hauling	3.8400e- 003	0.1641	0.0250	5.5000e- 004	0.0131	5.0000e- 004	0.0136	3.6000e- 003	4.8000e- 004	4.0800e- 003		58.4439	58.4439	3.8100e- 003		58.5391
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	,	0.0000
Worker	0.0605	0.0363	0.3880	1.2500e- 003	0.1453	8.6000e- 004	0.1462	0.0385	7.9000e- 004	0.0393		124.1752	124.1752	2.8700e- 003		124.2469
Total	0.0643	0.2004	0.4130	1.8000e- 003	0.1584	1.3600e- 003	0.1598	0.0421	1.2700e- 003	0.0434		182.6191	182.6191	6.6800e- 003		182.7860

3.3 Site Preparation - 2021

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Fugitive Dust					0.1750	0.0000	0.1750	0.0189	0.0000	0.0189			0.0000			0.0000
Off-Road	0.1873	1.8958	2.2602	3.1100e- 003		0.1118	0.1118		0.1028	0.1028		300.9001	300.9001	0.0973		303.3330
Total	0.1873	1.8958	2.2602	3.1100e- 003	0.1750	0.1118	0.2868	0.0189	0.1028	0.1217		300.9001	300.9001	0.0973		303.3330

Page 11 of 28

07402002 Sunny Express Car Wash - Riverside-South Coast County, Winter

3.3 Site Preparation - 2021

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0372	0.0224	0.2387	7.7000e- 004	0.0894	5.3000e- 004	0.0900	0.0237	4.9000e- 004	0.0242		76.4155	76.4155	1.7700e- 003		76.4596
Total	0.0372	0.0224	0.2387	7.7000e- 004	0.0894	5.3000e- 004	0.0900	0.0237	4.9000e- 004	0.0242		76.4155	76.4155	1.7700e- 003		76.4596

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Fugitive Dust					0.0682	0.0000	0.0682	7.3700e- 003	0.0000	7.3700e- 003			0.0000			0.0000
Off-Road	0.1873	1.8958	2.2602	3.1100e- 003		0.1118	0.1118		0.1028	0.1028	0.0000	300.9001	300.9001	0.0973		303.3330
Total	0.1873	1.8958	2.2602	3.1100e- 003	0.0682	0.1118	0.1800	7.3700e- 003	0.1028	0.1102	0.0000	300.9001	300.9001	0.0973		303.3330

Page 12 of 28

07402002 Sunny Express Car Wash - Riverside-South Coast County, Winter

3.3 Site Preparation - 2021

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0372	0.0224	0.2387	7.7000e- 004	0.0894	5.3000e- 004	0.0900	0.0237	4.9000e- 004	0.0242		76.4155	76.4155	1.7700e- 003		76.4596
Total	0.0372	0.0224	0.2387	7.7000e- 004	0.0894	5.3000e- 004	0.0900	0.0237	4.9000e- 004	0.0242		76.4155	76.4155	1.7700e- 003		76.4596

3.4 Grading - 2021

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Fugitive Dust					4.9143	0.0000	4.9143	2.5256	0.0000	2.5256			0.0000			0.0000
Off-Road	1.2884	14.3307	6.3314	0.0141		0.6379	0.6379		0.5869	0.5869		1,365.064 8	1,365.064 8	0.4415		1,376.102 0
Total	1.2884	14.3307	6.3314	0.0141	4.9143	0.6379	5.5522	2.5256	0.5869	3.1125		1,365.064 8	1,365.064 8	0.4415		1,376.102 0

Page 13 of 28

07402002 Sunny Express Car Wash - Riverside-South Coast County, Winter

3.4 Grading - 2021

Unmitigated Construction Off-Site

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0372	0.0224	0.2387	7.7000e- 004	0.0894	5.3000e- 004	0.0900	0.0237	4.9000e- 004	0.0242		76.4155	76.4155	1.7700e- 003		76.4596
Total	0.0372	0.0224	0.2387	7.7000e- 004	0.0894	5.3000e- 004	0.0900	0.0237	4.9000e- 004	0.0242		76.4155	76.4155	1.7700e- 003		76.4596

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Fugitive Dust					1.9166	0.0000	1.9166	0.9850	0.0000	0.9850		- - - - -	0.0000			0.0000
Off-Road	1.2884	14.3307	6.3314	0.0141		0.6379	0.6379		0.5869	0.5869	0.0000	1,365.064 8	1,365.064 8	0.4415		1,376.102 0
Total	1.2884	14.3307	6.3314	0.0141	1.9166	0.6379	2.5545	0.9850	0.5869	1.5719	0.0000	1,365.064 8	1,365.064 8	0.4415		1,376.102 0

Page 14 of 28

07402002 Sunny Express Car Wash - Riverside-South Coast County, Winter

3.4 Grading - 2021

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0372	0.0224	0.2387	7.7000e- 004	0.0894	5.3000e- 004	0.0900	0.0237	4.9000e- 004	0.0242		76.4155	76.4155	1.7700e- 003		76.4596
Total	0.0372	0.0224	0.2387	7.7000e- 004	0.0894	5.3000e- 004	0.0900	0.0237	4.9000e- 004	0.0242		76.4155	76.4155	1.7700e- 003		76.4596

3.5 Building Construction - 2021

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Off-Road	2.3596	19.5793	16.9576	0.0299		0.9786	0.9786		0.9315	0.9315		2,756.972 3	2,756.972 3	0.6017		2,772.014 6
Total	2.3596	19.5793	16.9576	0.0299		0.9786	0.9786		0.9315	0.9315		2,756.972 3	2,756.972 3	0.6017		2,772.014 6

Page 15 of 28

07402002 Sunny Express Car Wash - Riverside-South Coast County, Winter

3.5 Building Construction - 2021

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0223	0.8257	0.1758	2.2400e- 003	0.0576	1.6300e- 003	0.0593	0.0166	1.5600e- 003	0.0182		236.6759	236.6759	0.0196		237.1660
Worker	0.1070	0.0642	0.6864	2.2000e- 003	0.2571	1.5100e- 003	0.2586	0.0682	1.3900e- 003	0.0696		219.6945	219.6945	5.0800e- 003		219.8214
Total	0.1293	0.8899	0.8622	4.4400e- 003	0.3147	3.1400e- 003	0.3179	0.0848	2.9500e- 003	0.0877		456.3704	456.3704	0.0247		456.9874

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Off-Road	2.3596	19.5793	16.9576	0.0299		0.9786	0.9786	1 1 1	0.9315	0.9315	0.0000	2,756.972 3	2,756.972 3	0.6017		2,772.014 6
Total	2.3596	19.5793	16.9576	0.0299		0.9786	0.9786		0.9315	0.9315	0.0000	2,756.972 3	2,756.972 3	0.6017		2,772.014 6

Page 16 of 28

07402002 Sunny Express Car Wash - Riverside-South Coast County, Winter

3.5 Building Construction - 2021

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0223	0.8257	0.1758	2.2400e- 003	0.0576	1.6300e- 003	0.0593	0.0166	1.5600e- 003	0.0182		236.6759	236.6759	0.0196		237.1660
Worker	0.1070	0.0642	0.6864	2.2000e- 003	0.2571	1.5100e- 003	0.2586	0.0682	1.3900e- 003	0.0696		219.6945	219.6945	5.0800e- 003		219.8214
Total	0.1293	0.8899	0.8622	4.4400e- 003	0.3147	3.1400e- 003	0.3179	0.0848	2.9500e- 003	0.0877		456.3704	456.3704	0.0247		456.9874

3.5 Building Construction - 2022

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/c	lay		
Off-Road	2.1371	17.6892	16.6895	0.0299		0.8392	0.8392		0.7991	0.7991		2,757.618 0	2,757.618 0	0.5931		2,772.446 4
Total	2.1371	17.6892	16.6895	0.0299		0.8392	0.8392		0.7991	0.7991		2,757.618 0	2,757.618 0	0.5931		2,772.446 4

Page 17 of 28

07402002 Sunny Express Car Wash - Riverside-South Coast County, Winter

3.5 Building Construction - 2022

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0208	0.7779	0.1641	2.2200e- 003	0.0576	1.3700e- 003	0.0590	0.0166	1.3100e- 003	0.0179		234.6094	234.6094	0.0186		235.0741
Worker	0.1004	0.0578	0.6321	2.1200e- 003	0.2571	1.4700e- 003	0.2586	0.0682	1.3600e- 003	0.0695		211.6779	211.6779	4.5700e- 003		211.7921
Total	0.1212	0.8357	0.7962	4.3400e- 003	0.3147	2.8400e- 003	0.3176	0.0848	2.6700e- 003	0.0875		446.2874	446.2874	0.0232		446.8661

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
Off-Road	2.1371	17.6892	16.6895	0.0299		0.8392	0.8392		0.7991	0.7991	0.0000	2,757.617 9	2,757.617 9	0.5931		2,772.446 4
Total	2.1371	17.6892	16.6895	0.0299		0.8392	0.8392		0.7991	0.7991	0.0000	2,757.617 9	2,757.617 9	0.5931		2,772.446 4

Page 18 of 28

07402002 Sunny Express Car Wash - Riverside-South Coast County, Winter

3.5 Building Construction - 2022

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0208	0.7779	0.1641	2.2200e- 003	0.0576	1.3700e- 003	0.0590	0.0166	1.3100e- 003	0.0179		234.6094	234.6094	0.0186		235.0741
Worker	0.1004	0.0578	0.6321	2.1200e- 003	0.2571	1.4700e- 003	0.2586	0.0682	1.3600e- 003	0.0695		211.6779	211.6779	4.5700e- 003		211.7921
Total	0.1212	0.8357	0.7962	4.3400e- 003	0.3147	2.8400e- 003	0.3176	0.0848	2.6700e- 003	0.0875		446.2874	446.2874	0.0232		446.8661

3.6 Paving - 2022

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/c	lay		
Off-Road	0.6877	6.7738	8.8060	0.0135		0.3474	0.3474		0.3205	0.3205		1,297.378 9	1,297.378 9	0.4113		1,307.660 8
Paving	0.2437					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	0.9313	6.7738	8.8060	0.0135		0.3474	0.3474		0.3205	0.3205		1,297.378 9	1,297.378 9	0.4113		1,307.660 8

Page 19 of 28

07402002 Sunny Express Car Wash - Riverside-South Coast County, Winter

3.6 Paving - 2022

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0567	0.0327	0.3573	1.2000e- 003	0.1453	8.3000e- 004	0.1461	0.0385	7.7000e- 004	0.0393		119.6441	119.6441	2.5800e- 003		119.7086
Total	0.0567	0.0327	0.3573	1.2000e- 003	0.1453	8.3000e- 004	0.1461	0.0385	7.7000e- 004	0.0393		119.6441	119.6441	2.5800e- 003		119.7086

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	day		
Off-Road	0.6877	6.7738	8.8060	0.0135		0.3474	0.3474		0.3205	0.3205	0.0000	1,297.378 9	1,297.378 9	0.4113		1,307.660 8
Paving	0.2437					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	0.9313	6.7738	8.8060	0.0135		0.3474	0.3474		0.3205	0.3205	0.0000	1,297.378 9	1,297.378 9	0.4113		1,307.660 8

Page 20 of 28

07402002 Sunny Express Car Wash - Riverside-South Coast County, Winter

3.6 Paving - 2022

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e			
Category	lb/day											lb/day							
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000			
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000			
Worker	0.0567	0.0327	0.3573	1.2000e- 003	0.1453	8.3000e- 004	0.1461	0.0385	7.7000e- 004	0.0393		119.6441	119.6441	2.5800e- 003		119.7086			
Total	0.0567	0.0327	0.3573	1.2000e- 003	0.1453	8.3000e- 004	0.1461	0.0385	7.7000e- 004	0.0393		119.6441	119.6441	2.5800e- 003		119.7086			

3.7 Architectural Coating - 2022

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Archit. Coating	6.4153					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	0.2045	1.4085	1.8136	2.9700e- 003		0.0817	0.0817		0.0817	0.0817		281.4481	281.4481	0.0183		281.9062
Total	6.6198	1.4085	1.8136	2.9700e- 003		0.0817	0.0817		0.0817	0.0817		281.4481	281.4481	0.0183		281.9062

3.7 Architectural Coating - 2022

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category		lb/e	lb/day													
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0218	0.0126	0.1374	4.6000e- 004	0.0559	3.2000e- 004	0.0562	0.0148	3.0000e- 004	0.0151		46.0169	46.0169	9.9000e- 004		46.0418
Total	0.0218	0.0126	0.1374	4.6000e- 004	0.0559	3.2000e- 004	0.0562	0.0148	3.0000e- 004	0.0151		46.0169	46.0169	9.9000e- 004		46.0418

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	day		
Archit. Coating	6.4153					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	0.2045	1.4085	1.8136	2.9700e- 003		0.0817	0.0817		0.0817	0.0817	0.0000	281.4481	281.4481	0.0183		281.9062
Total	6.6198	1.4085	1.8136	2.9700e- 003		0.0817	0.0817		0.0817	0.0817	0.0000	281.4481	281.4481	0.0183		281.9062

Page 22 of 28

07402002 Sunny Express Car Wash - Riverside-South Coast County, Winter

3.7 Architectural Coating - 2022

Mitigated Construction Off-Site

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category		lb/e	lb/day													
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0218	0.0126	0.1374	4.6000e- 004	0.0559	3.2000e- 004	0.0562	0.0148	3.0000e- 004	0.0151		46.0169	46.0169	9.9000e- 004		46.0418
Total	0.0218	0.0126	0.1374	4.6000e- 004	0.0559	3.2000e- 004	0.0562	0.0148	3.0000e- 004	0.0151		46.0169	46.0169	9.9000e- 004		46.0418

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

Improve Destination Accessibility

Increase Transit Accessibility

Page 23 of 28

07402002 Sunny Express Car Wash - Riverside-South Coast County, Winter

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/c	lay		
Mitigated	0.9057	7.2443	7.6406	0.0314	2.1997	0.0222	2.2220	0.5885	0.0208	0.6093		3,221.760 0	3,221.760 0	0.2529		3,228.083 3
Unmitigated	0.9769	7.9800	9.5093	0.0413	3.1007	0.0293	3.1300	0.8296	0.0275	0.8571		4,231.348 5	4,231.348 5	0.2800		4,238.347 2

4.2 Trip Summary Information

	Ave	rage Daily Trip Ra	ate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Automobile Care Center	720.27	720.27	720.27	1,453,978	1,031,482
Other Asphalt Surfaces	0.00	0.00	0.00		
Other Non-Asphalt Surfaces	0.00	0.00	0.00		
Total	720.27	720.27	720.27	1,453,978	1,031,482

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Automobile Care Center	16.60	8.40	6.90	33.00	48.00	19.00	35	65	0
Other Asphalt Surfaces	16.60	8.40	6.90	0.00	0.00	0.00	0	0	0
Other Non-Asphalt Surfaces	16.60	8.40	6.90	0.00	0.00	0.00	0	0	0

4.4 Fleet Mix

Page 24 of 28

07402002 Sunny Express Car Wash - Riverside-South Coast County, Winter

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Automobile Care Center	0.545527	0.036856	0.186032	0.115338	0.015222	0.004970	0.017525	0.069528	0.001397	0.001160	0.004547	0.000932	0.000965
Other Asphalt Surfaces	0.545527	0.036856	0.186032	0.115338	0.015222	0.004970	0.017525	0.069528	0.001397	0.001160	0.004547	0.000932	0.000965
Other Non-Asphalt Surfaces	0.545527	0.036856	0.186032	0.115338	0.015222	0.004970	0.017525	0.069528	0.001397	0.001160	0.004547	0.000932	0.000965

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

Exceed Title 24

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	day		
naturalous	4.4800e- 003	0.0407	0.0342	2.4000e- 004		3.0900e- 003	3.0900e- 003		3.0900e- 003	3.0900e- 003		48.8530	48.8530	9.4000e- 004	9.0000e- 004	49.1434
NaturalGas Unmitigated	5.2200e- 003	0.0474	0.0399	2.8000e- 004		3.6100e- 003	3.6100e- 003		3.6100e- 003	3.6100e- 003		56.9269	56.9269	1.0900e- 003	1.0400e- 003	57.2652

Page 25 of 28

07402002 Sunny Express Car Wash - Riverside-South Coast County, Winter

5.2 Energy by Land Use - NaturalGas

<u>Unmitigated</u>

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/d	day							lb/d	day		
Automobile Care Center	483.878	5.2200e- 003	0.0474	0.0399	2.8000e- 004		3.6100e- 003	3.6100e- 003		3.6100e- 003	3.6100e- 003		56.9269	56.9269	1.0900e- 003	1.0400e- 003	57.2652
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000	,,,,,,,	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Other Non- Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total		5.2200e- 003	0.0474	0.0399	2.8000e- 004		3.6100e- 003	3.6100e- 003		3.6100e- 003	3.6100e- 003		56.9269	56.9269	1.0900e- 003	1.0400e- 003	57.2652

Mitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/o	day							lb/c	lay		
Automobile Care Center	0.415251	4.4800e- 003	0.0407	0.0342	2.4000e- 004		3.0900e- 003	3.0900e- 003		3.0900e- 003	3.0900e- 003		48.8530	48.8530	9.4000e- 004	9.0000e- 004	49.1434
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Other Non- Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total		4.4800e- 003	0.0407	0.0342	2.4000e- 004		3.0900e- 003	3.0900e- 003		3.0900e- 003	3.0900e- 003		48.8530	48.8530	9.4000e- 004	9.0000e- 004	49.1434

6.0 Area Detail

6.1 Mitigation Measures Area

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/d	day		
Mitigated	0.1429	1.0000e- 005	1.5700e- 003	0.0000		1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e- 005		3.3600e- 003	3.3600e- 003	1.0000e- 005		3.5800e- 003
Unmitigated	0.1429	1.0000e- 005	1.5700e- 003	0.0000		1.0000e- 005	1.0000e- 005	 - - - -	1.0000e- 005	1.0000e- 005		3.3600e- 003	3.3600e- 003	1.0000e- 005		3.5800e- 003

6.2 Area by SubCategory

Unmitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/o	day							lb/d	day		
Architectural Coating	0.0176					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	0.1252			 		0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	1.5000e- 004	1.0000e- 005	1.5700e- 003	0.0000		1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e- 005		3.3600e- 003	3.3600e- 003	1.0000e- 005		3.5800e- 003
Total	0.1429	1.0000e- 005	1.5700e- 003	0.0000		1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e- 005		3.3600e- 003	3.3600e- 003	1.0000e- 005		3.5800e- 003

Page 27 of 28

07402002 Sunny Express Car Wash - Riverside-South Coast County, Winter

6.2 Area by SubCategory

Mitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/e	day							lb/d	lay		
Architectural Coating	0.0176					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
	0.1252		,			0.0000	0.0000	1 1 1 1 1	0.0000	0.0000			0.0000			0.0000
Landscaping	1.5000e- 004	1.0000e- 005	1.5700e- 003	0.0000		1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e- 005		3.3600e- 003	3.3600e- 003	1.0000e- 005		3.5800e- 003
Total	0.1429	1.0000e- 005	1.5700e- 003	0.0000		1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e- 005		3.3600e- 003	3.3600e- 003	1.0000e- 005		3.5800e- 003

7.0 Water Detail

7.1 Mitigation Measures Water

8.0 Waste Detail

8.1 Mitigation Measures Waste

Institute Recycling and Composting Services

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type
<u>Boilers</u>						
Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type	
User Defined Equipment						
Equipment Type	Number					

11.0 Vegetation

Appendix B:

CalEEMod Annual Emission Output

07402002 Sunny Express Car Wash

Riverside-South Coast County, Annual

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Other Asphalt Surfaces	0.93	Acre	0.93	40,510.80	0
Other Non-Asphalt Surfaces	8.98	1000sqft	0.21	8,978.00	0
Automobile Care Center	5.44	1000sqft	0.12	5,436.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.4	Precipitation Freq (Days)	28
Climate Zone	10			Operational Year	2022
Utility Company	Southern California Edisor	n			
CO2 Intensity (Ib/MWhr)	702.44	CH4 Intensity (Ib/MWhr)	0.029	N2O Intensity (Ib/MWhr)	0.006

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use - ~1.26 ac to be developed w/ 5.436 TSF car wash, 8,978 sf landscaping, & remainder (~0.93 acres) paving (includes parking lot w/ 30 spaces including 27 vacuum spaces).

Construction Phase - Per project applicant, construction anticipated to being 7/19/21 and be complete by 2/19/22.

Off-road Equipment - Site prep of ~26% (~14,500 sf or 0.33 ac) of proposed area to be developed to remove existing asphalt surfaces; therefore, only ~26% of CalEEMod default site prep equipment needed.

Demolition - Demolition of two existing buildings totaling ~3,283 square feet.

Grading - Site anticipated to balance. Site prep of ~26% (~14,500 sf or 0.33 ac) of proposed developed area to remove existing asphalt surfaces.

Vehicle Trips - Per Traffic Scoping Agreement, 132.5 trips/TSF/day with incorporation of pass-by reduction. Pass-by trips changed to 0 & split between primary/diverted.

Sequestration -

Construction Off-road Equipment Mitigation - SCAQMD Rule 403 - Fugitive Dust.

Mobile Land Use Mitigation - Site is ~0.26 miles SW RTA Rte 8 stop Riverside/Lakeshore & ~2.6 miles NW of downtown portion of Lake Elsinore.

Energy Mitigation - 2019 Title 24 Standards for non-residential buildings will use ~30% less energy than with 2016 Title 24 Standards.

Water Mitigation -

Waste Mitigation - AB 341 requires each jurisdiction in CA divert at least 75% of their waste away from landfills by 2020.

Off-road Equipment - CalEEMod default construction timing for building construction reduced by ~37%; therefore, ~37% more equipment was added to CalEEMod default construction equipment list.

Table Name	Column Name	Default Value	New Value
tblConstDustMitigation	WaterUnpavedRoadVehicleSpeed	0	15
tblConstructionPhase	NumDays	200.00	125.00
tblConstructionPhase	PhaseEndDate	5/30/2022	2/14/2022
tblConstructionPhase	PhaseEndDate	6/13/2022	2/19/2022
tblConstructionPhase	PhaseEndDate	6/27/2022	2/19/2022
tblConstructionPhase	PhaseStartDate	5/31/2022	2/7/2022
tblConstructionPhase	PhaseStartDate	6/14/2022	2/7/2022
tblGrading	AcresOfGrading	0.00	0.33
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	2.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	2.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	2.00
tblTripsAndVMT	WorkerTripNumber	3.00	8.00
tblVehicleTrips	DV_TP	51.00	65.00
tblVehicleTrips	PB_TP	28.00	0.00
tblVehicleTrips	PR_TP	21.00	35.00
tblVehicleTrips	ST_TR	23.72	132.50
tblVehicleTrips	SU_TR	11.88	132.50
tblVehicleTrips	WD_TR	23.72	132.50

2.0 Emissions Summary

2.1 Overall Construction

Unmitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					ton	s/yr							MT	/yr		
2021	0.1399	1.1924	1.0036	1.9100e- 003	0.0280	0.0580	0.0860	9.7300e- 003	0.0549	0.0647	0.0000	163.2074	163.2074	0.0330	0.0000	164.0326
2022	0.0730	0.3285	0.3271	6.2000e- 004	5.7900e- 003	0.0152	0.0210	1.5600e- 003	0.0144	0.0160	0.0000	53.1353	53.1353	0.0106	0.0000	53.4008
Maximum	0.1399	1.1924	1.0036	1.9100e- 003	0.0280	0.0580	0.0860	9.7300e- 003	0.0549	0.0647	0.0000	163.2074	163.2074	0.0330	0.0000	164.0326

Mitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year	tons/yr									MT/yr						
2021	0.1399	1.1924	1.0036	1.9100e- 003	0.0209	0.0580	0.0789	6.4800e- 003	0.0549	0.0614	0.0000	163.2072	163.2072	0.0330	0.0000	164.0324
2022	0.0730	0.3285	0.3271	6.2000e- 004	5.7900e- 003	0.0152	0.0210	1.5600e- 003	0.0144	0.0160	0.0000	53.1353	53.1353	0.0106	0.0000	53.4007
Maximum	0.1399	1.1924	1.0036	1.9100e- 003	0.0209	0.0580	0.0789	6.4800e- 003	0.0549	0.0614	0.0000	163.2072	163.2072	0.0330	0.0000	164.0324
	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	20.98	0.00	6.64	28.79	0.00	4.02	0.00	0.00	0.00	0.00	0.00	0.00

Quarter	Start Date	End Date	Maximum Unmitigated ROG + NOX (tons/quarter)	Maximum Mitigated ROG + NOX (tons/quarter)
1	7-19-2021	10-18-2021	0.6997	0.6997
2	10-19-2021	1-18-2022	0.7404	0.7404
3	1-19-2022	4-18-2022	0.2740	0.2740
		Highest	0.7404	0.7404

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr									MT/yr						
Area	0.0261	0.0000	2.0000e- 004	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	3.8000e- 004	3.8000e- 004	0.0000	0.0000	4.1000e- 004
Energy	9.5000e- 004	8.6600e- 003	7.2700e- 003	5.0000e- 005		6.6000e- 004	6.6000e- 004		6.6000e- 004	6.6000e- 004	0.0000	27.0050	27.0050	9.1000e- 004	3.2000e- 004	27.1239
Mobile	0.1776	1.4794	1.7625	7.7200e- 003	0.5551	5.2800e- 003	0.5604	0.1487	4.9500e- 003	0.1537	0.0000	717.1634	717.1634	0.0444	0.0000	718.2733
Waste	,					0.0000	0.0000		0.0000	0.0000	4.2182	0.0000	4.2182	0.2493	0.0000	10.4503
Water	,					0.0000	0.0000		0.0000	0.0000	0.1624	3.2338	3.3961	0.0168	4.2000e- 004	3.9420
Total	0.2047	1.4881	1.7700	7.7700e- 003	0.5551	5.9400e- 003	0.5611	0.1487	5.6100e- 003	0.1543	4.3805	747.4024	751.7830	0.3114	7.4000e- 004	759.7898

Page 6 of 34

07402002 Sunny Express Car Wash - Riverside-South Coast County, Annual

2.2 Overall Operational

Mitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exha PM2		PM2.5 Total	Bio- CO2	2 NBio-	CO2 T	otal CO2	CH4	N2O	CO2e
Category	1				tor	ns/yr									МТ	/yr		
Area	0.0261	0.0000	2.0000e- 004	0.0000		0.0000	0.0000		0.00	000	0.0000	0.0000	3.80 00		3.8000e- 004	0.0000	0.0000	4.1000e- 004
- 55	8.2000e- 004	7.4300e- 003	6.2400e- 003	4.0000e- 005		5.6000e- 004	5.6000e- 004		5.600 00		5.6000e- 004	0.0000	24.5	251	24.5251	8.3000e- 004	2.9000e- 004	24.6320
Mobile	0.1645	1.3438	1.4034	5.8900e- 003	0.3938	3.9900e- 003	0.3978	0.1055	3.740 00		0.1093	0.0000	547.	3523 5	547.8523	0.0399	0.0000	548.8490
Waste	e,					0.0000	0.0000		0.00	000	0.0000	1.0545	0.0	000	1.0545	0.0623	0.0000	2.6126
Water	p,					0.0000	0.0000		0.00	000	0.0000	0.1624	3.2	338	3.3961	0.0168	4.2000e- 004	3.9420
Total	0.1914	1.3513	1.4099	5.9300e- 003	0.3938	4.5500e- 003	0.3984	0.1055	4.300 00		0.1098	1.2169	575.0	5116 5	576.8285	0.1198	7.1000e- 004	580.0359
	ROG	N	lOx	co s					ugitive PM2.5	Exhaus PM2.			- CO2	NBio-CO	D2 Total	CO2 C	:H4 M	I20 CO2
Percent Reduction	6.50	9	.20 2	0.35 23	3.68 29	9.06 23	3.40 29	9.00	29.05	23.35	5 28.	85 7	2.22	22.99	23.2	27 6′	1.52 4	.05 23.6

Page 7 of 34

07402002 Sunny Express Car Wash - Riverside-South Coast County, Annual

2.3 Vegetation

Vegetation

	CO2e
Category	MT
New Trees	0.0000
Total	0.0000

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Demolition	Demolition	7/19/2021	8/13/2021	5	20	
2	Site Preparation	Site Preparation	8/14/2021	8/17/2021	5	2	
3	Grading	Grading	8/18/2021	8/23/2021	5	4	
4	Building Construction	Building Construction	8/24/2021	2/14/2022	5	125	
5	Paving	Paving	2/7/2022	2/19/2022	5	10	
6	Architectural Coating	Architectural Coating	2/7/2022	2/19/2022	5	10	

Acres of Grading (Site Preparation Phase): 0.33

Acres of Grading (Grading Phase): 1.5

Acres of Paving: 1.14

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 8,154; Non-Residential Outdoor: 2,718; Striped Parking Area: 2,969 (Architectural Coating – sqft)

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Demolition	Concrete/Industrial Saws	1	8.00	81	0.73
Demolition	Rubber Tired Dozers	1	8.00	247	0.40
Demolition	Tractors/Loaders/Backhoes	3	8.00	97	0.37
Site Preparation	Graders	0	8.00	187	0.41
Site Preparation	Rubber Tired Dozers	0	7.00	247	0.40
Site Preparation	Tractors/Loaders/Backhoes	1	8.00	97	0.37
Grading	Graders	1	6.00	187	0.41
Grading	Rubber Tired Dozers	1	6.00	247	0.40
Grading	Tractors/Loaders/Backhoes	1	7.00	97	0.37
Building Construction	Cranes	2	6.00	231	0.29
Building Construction	Forklifts	2	6.00	89	0.20
Building Construction	Generator Sets	1	8.00	84	0.74
Building Construction	Tractors/Loaders/Backhoes	2	6.00	97	0.37
Building Construction	Welders	3	8.00	46	0.45
Paving	Cement and Mortar Mixers	1	6.00	9	0.56
Paving	Pavers	1	6.00	130	0.42
Paving	Paving Equipment	1	8.00	132	0.36
Paving	Rollers	1	7.00	80	0.38
Paving	Tractors/Loaders/Backhoes	1	8.00	97	0.37
Architectural Coating	Air Compressors	1	6.00	78	0.48

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Demolition	5	13.00	0.00	15.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Site Preparation	1	8.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Grading	3	8.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Building Construction	10	23.00	9.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Paving	5	13.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Architectural Coating	1	5.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

Water Exposed Area

Reduce Vehicle Speed on Unpaved Roads

3.2 Demolition - 2021

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	7/yr		
Fugitive Dust					1.6300e- 003	0.0000	1.6300e- 003	2.5000e- 004	0.0000	2.5000e- 004	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0199	0.1970	0.1449	2.4000e- 004		0.0104	0.0104		9.7100e- 003	9.7100e- 003	0.0000	21.0713	21.0713	5.3900e- 003	0.0000	21.2060
Total	0.0199	0.1970	0.1449	2.4000e- 004	1.6300e- 003	0.0104	0.0120	2.5000e- 004	9.7100e- 003	9.9600e- 003	0.0000	21.0713	21.0713	5.3900e- 003	0.0000	21.2060

3.2 Demolition - 2021

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Hauling	4.0000e- 005	1.6700e- 003	2.3000e- 004	1.0000e- 005	1.3000e- 004	0.0000	1.3000e- 004	4.0000e- 005	0.0000	4.0000e- 005	0.0000	0.5381	0.5381	3.0000e- 005	0.0000	0.5389
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	5.6000e- 004	3.8000e- 004	4.0900e- 003	1.0000e- 005	1.4300e- 003	1.0000e- 005	1.4400e- 003	3.8000e- 004	1.0000e- 005	3.9000e- 004	0.0000	1.1555	1.1555	3.0000e- 005	0.0000	1.1562
Total	6.0000e- 004	2.0500e- 003	4.3200e- 003	2.0000e- 005	1.5600e- 003	1.0000e- 005	1.5700e- 003	4.2000e- 004	1.0000e- 005	4.3000e- 004	0.0000	1.6936	1.6936	6.0000e- 005	0.0000	1.6951

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Fugitive Dust					6.3000e- 004	0.0000	6.3000e- 004	1.0000e- 004	0.0000	1.0000e- 004	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0199	0.1970	0.1449	2.4000e- 004		0.0104	0.0104		9.7100e- 003	9.7100e- 003	0.0000	21.0713	21.0713	5.3900e- 003	0.0000	21.2060
Total	0.0199	0.1970	0.1449	2.4000e- 004	6.3000e- 004	0.0104	0.0110	1.0000e- 004	9.7100e- 003	9.8100e- 003	0.0000	21.0713	21.0713	5.3900e- 003	0.0000	21.2060

3.2 Demolition - 2021

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	4.0000e- 005	1.6700e- 003	2.3000e- 004	1.0000e- 005	1.3000e- 004	0.0000	1.3000e- 004	4.0000e- 005	0.0000	4.0000e- 005	0.0000	0.5381	0.5381	3.0000e- 005	0.0000	0.5389
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	5.6000e- 004	3.8000e- 004	4.0900e- 003	1.0000e- 005	1.4300e- 003	1.0000e- 005	1.4400e- 003	3.8000e- 004	1.0000e- 005	3.9000e- 004	0.0000	1.1555	1.1555	3.0000e- 005	0.0000	1.1562
Total	6.0000e- 004	2.0500e- 003	4.3200e- 003	2.0000e- 005	1.5600e- 003	1.0000e- 005	1.5700e- 003	4.2000e- 004	1.0000e- 005	4.3000e- 004	0.0000	1.6936	1.6936	6.0000e- 005	0.0000	1.6951

3.3 Site Preparation - 2021

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Fugitive Dust					1.7000e- 004	0.0000	1.7000e- 004	2.0000e- 005	0.0000	2.0000e- 005	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
On Road	1.9000e- 004	1.9000e- 003	2.2600e- 003	0.0000		1.1000e- 004	1.1000e- 004		1.0000e- 004	1.0000e- 004	0.0000	0.2730	0.2730	9.0000e- 005	0.0000	0.2752
Total	1.9000e- 004	1.9000e- 003	2.2600e- 003	0.0000	1.7000e- 004	1.1000e- 004	2.8000e- 004	2.0000e- 005	1.0000e- 004	1.2000e- 004	0.0000	0.2730	0.2730	9.0000e- 005	0.0000	0.2752

3.3 Site Preparation - 2021

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	3.0000e- 005	2.0000e- 005	2.5000e- 004	0.0000	9.0000e- 005	0.0000	9.0000e- 005	2.0000e- 005	0.0000	2.0000e- 005	0.0000	0.0711	0.0711	0.0000	0.0000	0.0712
Total	3.0000e- 005	2.0000e- 005	2.5000e- 004	0.0000	9.0000e- 005	0.0000	9.0000e- 005	2.0000e- 005	0.0000	2.0000e- 005	0.0000	0.0711	0.0711	0.0000	0.0000	0.0712

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Fugitive Dust					7.0000e- 005	0.0000	7.0000e- 005	1.0000e- 005	0.0000	1.0000e- 005	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	1.9000e- 004	1.9000e- 003	2.2600e- 003	0.0000		1.1000e- 004	1.1000e- 004		1.0000e- 004	1.0000e- 004	0.0000	0.2730	0.2730	9.0000e- 005	0.0000	0.2752
Total	1.9000e- 004	1.9000e- 003	2.2600e- 003	0.0000	7.0000e- 005	1.1000e- 004	1.8000e- 004	1.0000e- 005	1.0000e- 004	1.1000e- 004	0.0000	0.2730	0.2730	9.0000e- 005	0.0000	0.2752

Page 13 of 34

07402002 Sunny Express Car Wash - Riverside-South Coast County, Annual

3.3 Site Preparation - 2021

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	'/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	3.0000e- 005	2.0000e- 005	2.5000e- 004	0.0000	9.0000e- 005	0.0000	9.0000e- 005	2.0000e- 005	0.0000	2.0000e- 005	0.0000	0.0711	0.0711	0.0000	0.0000	0.0712
Total	3.0000e- 005	2.0000e- 005	2.5000e- 004	0.0000	9.0000e- 005	0.0000	9.0000e- 005	2.0000e- 005	0.0000	2.0000e- 005	0.0000	0.0711	0.0711	0.0000	0.0000	0.0712

3.4 Grading - 2021

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Fugitive Dust					9.8300e- 003	0.0000	9.8300e- 003	5.0500e- 003	0.0000	5.0500e- 003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	2.5800e- 003	0.0287	0.0127	3.0000e- 005		1.2800e- 003	1.2800e- 003		1.1700e- 003	1.1700e- 003	0.0000	2.4767	2.4767	8.0000e- 004	0.0000	2.4968
Total	2.5800e- 003	0.0287	0.0127	3.0000e- 005	9.8300e- 003	1.2800e- 003	0.0111	5.0500e- 003	1.1700e- 003	6.2200e- 003	0.0000	2.4767	2.4767	8.0000e- 004	0.0000	2.4968

Page 14 of 34

07402002 Sunny Express Car Wash - Riverside-South Coast County, Annual

3.4 Grading - 2021

Unmitigated Construction Off-Site

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	7.0000e- 005	5.0000e- 005	5.0000e- 004	0.0000	1.8000e- 004	0.0000	1.8000e- 004	5.0000e- 005	0.0000	5.0000e- 005	0.0000	0.1422	0.1422	0.0000	0.0000	0.1423
Total	7.0000e- 005	5.0000e- 005	5.0000e- 004	0.0000	1.8000e- 004	0.0000	1.8000e- 004	5.0000e- 005	0.0000	5.0000e- 005	0.0000	0.1422	0.1422	0.0000	0.0000	0.1423

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Fugitive Dust					3.8300e- 003	0.0000	3.8300e- 003	1.9700e- 003	0.0000	1.9700e- 003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	2.5800e- 003	0.0287	0.0127	3.0000e- 005		1.2800e- 003	1.2800e- 003		1.1700e- 003	1.1700e- 003	0.0000	2.4767	2.4767	8.0000e- 004	0.0000	2.4968
Total	2.5800e- 003	0.0287	0.0127	3.0000e- 005	3.8300e- 003	1.2800e- 003	5.1100e- 003	1.9700e- 003	1.1700e- 003	3.1400e- 003	0.0000	2.4767	2.4767	8.0000e- 004	0.0000	2.4968

Page 15 of 34

07402002 Sunny Express Car Wash - Riverside-South Coast County, Annual

3.4 Grading - 2021

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	7.0000e- 005	5.0000e- 005	5.0000e- 004	0.0000	1.8000e- 004	0.0000	1.8000e- 004	5.0000e- 005	0.0000	5.0000e- 005	0.0000	0.1422	0.1422	0.0000	0.0000	0.1423
Total	7.0000e- 005	5.0000e- 005	5.0000e- 004	0.0000	1.8000e- 004	0.0000	1.8000e- 004	5.0000e- 005	0.0000	5.0000e- 005	0.0000	0.1422	0.1422	0.0000	0.0000	0.1423

3.5 Building Construction - 2021

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	'/yr		
Off-Road	0.1109	0.9202	0.7970	1.4000e- 003		0.0460	0.0460	1 1 1	0.0438	0.0438	0.0000	117.5509	117.5509	0.0257	0.0000	118.1923
Total	0.1109	0.9202	0.7970	1.4000e- 003		0.0460	0.0460		0.0438	0.0438	0.0000	117.5509	117.5509	0.0257	0.0000	118.1923

3.5 Building Construction - 2021

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	1.0100e- 003	0.0394	7.5900e- 003	1.1000e- 004	2.6700e- 003	8.0000e- 005	2.7500e- 003	7.7000e- 004	7.0000e- 005	8.4000e- 004	0.0000	10.3201	10.3201	7.9000e- 004	0.0000	10.3398
Worker	4.6300e- 003	3.1200e- 003	0.0340	1.1000e- 004	0.0119	7.0000e- 005	0.0120	3.1600e- 003	7.0000e- 005	3.2200e- 003	0.0000	9.6084	9.6084	2.2000e- 004	0.0000	9.6140
Total	5.6400e- 003	0.0426	0.0416	2.2000e- 004	0.0146	1.5000e- 004	0.0147	3.9300e- 003	1.4000e- 004	4.0600e- 003	0.0000	19.9285	19.9285	1.0100e- 003	0.0000	19.9538

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Off-Road	0.1109	0.9202	0.7970	1.4000e- 003		0.0460	0.0460	1 1 1	0.0438	0.0438	0.0000	117.5508	117.5508	0.0257	0.0000	118.1921
Total	0.1109	0.9202	0.7970	1.4000e- 003		0.0460	0.0460		0.0438	0.0438	0.0000	117.5508	117.5508	0.0257	0.0000	118.1921

Page 17 of 34

07402002 Sunny Express Car Wash - Riverside-South Coast County, Annual

3.5 Building Construction - 2021

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	1.0100e- 003	0.0394	7.5900e- 003	1.1000e- 004	2.6700e- 003	8.0000e- 005	2.7500e- 003	7.7000e- 004	7.0000e- 005	8.4000e- 004	0.0000	10.3201	10.3201	7.9000e- 004	0.0000	10.3398
Worker	4.6300e- 003	3.1200e- 003	0.0340	1.1000e- 004	0.0119	7.0000e- 005	0.0120	3.1600e- 003	7.0000e- 005	3.2200e- 003	0.0000	9.6084	9.6084	2.2000e- 004	0.0000	9.6140
Total	5.6400e- 003	0.0426	0.0416	2.2000e- 004	0.0146	1.5000e- 004	0.0147	3.9300e- 003	1.4000e- 004	4.0600e- 003	0.0000	19.9285	19.9285	1.0100e- 003	0.0000	19.9538

3.5 Building Construction - 2022

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
	0.0331	0.2742	0.2587	4.6000e- 004		0.0130	0.0130	1 1 1	0.0124	0.0124	0.0000	38.7759	38.7759	8.3400e- 003	0.0000	38.9844
Total	0.0331	0.2742	0.2587	4.6000e- 004		0.0130	0.0130		0.0124	0.0124	0.0000	38.7759	38.7759	8.3400e- 003	0.0000	38.9844

3.5 Building Construction - 2022

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	3.1000e- 004	0.0123	2.3300e- 003	4.0000e- 005	8.8000e- 004	2.0000e- 005	9.0000e- 004	2.5000e- 004	2.0000e- 005	2.7000e- 004	0.0000	3.3742	3.3742	2.5000e- 004	0.0000	3.3803
Worker	1.4300e- 003	9.3000e- 004	0.0103	3.0000e- 005	3.9200e- 003	2.0000e- 005	3.9400e- 003	1.0400e- 003	2.0000e- 005	1.0600e- 003	0.0000	3.0531	3.0531	7.0000e- 005	0.0000	3.0548
Total	1.7400e- 003	0.0132	0.0127	7.0000e- 005	4.8000e- 003	4.0000e- 005	4.8400e- 003	1.2900e- 003	4.0000e- 005	1.3300e- 003	0.0000	6.4273	6.4273	3.2000e- 004	0.0000	6.4351

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	∏/yr		
Off-Road	0.0331	0.2742	0.2587	4.6000e- 004		0.0130	0.0130	1 1 1	0.0124	0.0124	0.0000	38.7758	38.7758	8.3400e- 003	0.0000	38.9843
Total	0.0331	0.2742	0.2587	4.6000e- 004		0.0130	0.0130		0.0124	0.0124	0.0000	38.7758	38.7758	8.3400e- 003	0.0000	38.9843

Page 19 of 34

07402002 Sunny Express Car Wash - Riverside-South Coast County, Annual

3.5 Building Construction - 2022

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	3.1000e- 004	0.0123	2.3300e- 003	4.0000e- 005	8.8000e- 004	2.0000e- 005	9.0000e- 004	2.5000e- 004	2.0000e- 005	2.7000e- 004	0.0000	3.3742	3.3742	2.5000e- 004	0.0000	3.3803
Worker	1.4300e- 003	9.3000e- 004	0.0103	3.0000e- 005	3.9200e- 003	2.0000e- 005	3.9400e- 003	1.0400e- 003	2.0000e- 005	1.0600e- 003	0.0000	3.0531	3.0531	7.0000e- 005	0.0000	3.0548
Total	1.7400e- 003	0.0132	0.0127	7.0000e- 005	4.8000e- 003	4.0000e- 005	4.8400e- 003	1.2900e- 003	4.0000e- 005	1.3300e- 003	0.0000	6.4273	6.4273	3.2000e- 004	0.0000	6.4351

3.6 Paving - 2022

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Off-Road	3.4400e- 003	0.0339	0.0440	7.0000e- 005		1.7400e- 003	1.7400e- 003		1.6000e- 003	1.6000e- 003	0.0000	5.8848	5.8848	1.8700e- 003	0.0000	5.9315
Paving	1.2200e- 003					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	4.6600e- 003	0.0339	0.0440	7.0000e- 005		1.7400e- 003	1.7400e- 003		1.6000e- 003	1.6000e- 003	0.0000	5.8848	5.8848	1.8700e- 003	0.0000	5.9315

3.6 Paving - 2022

Unmitigated Construction Off-Site

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	'/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	2.6000e- 004	1.7000e- 004	1.8800e- 003	1.0000e- 005	7.1000e- 004	0.0000	7.2000e- 004	1.9000e- 004	0.0000	1.9000e- 004	0.0000	0.5567	0.5567	1.0000e- 005	0.0000	0.5570
Total	2.6000e- 004	1.7000e- 004	1.8800e- 003	1.0000e- 005	7.1000e- 004	0.0000	7.2000e- 004	1.9000e- 004	0.0000	1.9000e- 004	0.0000	0.5567	0.5567	1.0000e- 005	0.0000	0.5570

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	7/yr		
Off-Road	3.4400e- 003	0.0339	0.0440	7.0000e- 005		1.7400e- 003	1.7400e- 003		1.6000e- 003	1.6000e- 003	0.0000	5.8848	5.8848	1.8700e- 003	0.0000	5.9314
Paving	1.2200e- 003					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	4.6600e- 003	0.0339	0.0440	7.0000e- 005		1.7400e- 003	1.7400e- 003		1.6000e- 003	1.6000e- 003	0.0000	5.8848	5.8848	1.8700e- 003	0.0000	5.9314

3.6 Paving - 2022

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	2.6000e- 004	1.7000e- 004	1.8800e- 003	1.0000e- 005	7.1000e- 004	0.0000	7.2000e- 004	1.9000e- 004	0.0000	1.9000e- 004	0.0000	0.5567	0.5567	1.0000e- 005	0.0000	0.5570
Total	2.6000e- 004	1.7000e- 004	1.8800e- 003	1.0000e- 005	7.1000e- 004	0.0000	7.2000e- 004	1.9000e- 004	0.0000	1.9000e- 004	0.0000	0.5567	0.5567	1.0000e- 005	0.0000	0.5570

3.7 Architectural Coating - 2022

Unmitigated Construction On-Site

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Archit. Coating	0.0321					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	1.0200e- 003	7.0400e- 003	9.0700e- 003	1.0000e- 005		4.1000e- 004	4.1000e- 004		4.1000e- 004	4.1000e- 004	0.0000	1.2766	1.2766	8.0000e- 005	0.0000	1.2787
Total	0.0331	7.0400e- 003	9.0700e- 003	1.0000e- 005		4.1000e- 004	4.1000e- 004		4.1000e- 004	4.1000e- 004	0.0000	1.2766	1.2766	8.0000e- 005	0.0000	1.2787

3.7 Architectural Coating - 2022

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	1.0000e- 004	6.0000e- 005	7.2000e- 004	0.0000	2.7000e- 004	0.0000	2.8000e- 004	7.0000e- 005	0.0000	7.0000e- 005	0.0000	0.2141	0.2141	0.0000	0.0000	0.2142
Total	1.0000e- 004	6.0000e- 005	7.2000e- 004	0.0000	2.7000e- 004	0.0000	2.8000e- 004	7.0000e- 005	0.0000	7.0000e- 005	0.0000	0.2141	0.2141	0.0000	0.0000	0.2142

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Archit. Coating	0.0321					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	1.0200e- 003	7.0400e- 003	9.0700e- 003	1.0000e- 005		4.1000e- 004	4.1000e- 004		4.1000e- 004	4.1000e- 004	0.0000	1.2766	1.2766	8.0000e- 005	0.0000	1.2787
Total	0.0331	7.0400e- 003	9.0700e- 003	1.0000e- 005		4.1000e- 004	4.1000e- 004		4.1000e- 004	4.1000e- 004	0.0000	1.2766	1.2766	8.0000e- 005	0.0000	1.2787

3.7 Architectural Coating - 2022

Mitigated Construction Off-Site

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	1.0000e- 004	6.0000e- 005	7.2000e- 004	0.0000	2.7000e- 004	0.0000	2.8000e- 004	7.0000e- 005	0.0000	7.0000e- 005	0.0000	0.2141	0.2141	0.0000	0.0000	0.2142
Total	1.0000e- 004	6.0000e- 005	7.2000e- 004	0.0000	2.7000e- 004	0.0000	2.8000e- 004	7.0000e- 005	0.0000	7.0000e- 005	0.0000	0.2141	0.2141	0.0000	0.0000	0.2142

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

Improve Destination Accessibility

Increase Transit Accessibility

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Mitigated	0.1645	1.3438	1.4034	5.8900e- 003	0.3938	3.9900e- 003	0.3978	0.1055	3.7400e- 003	0.1093	0.0000	547.8523	547.8523	0.0399	0.0000	548.8490
Unmitigated	0.1776	1.4794	1.7625	7.7200e- 003	0.5551	5.2800e- 003	0.5604	0.1487	4.9500e- 003	0.1537	0.0000	717.1634	717.1634	0.0444	0.0000	718.2733

4.2 Trip Summary Information

	Avei	rage Daily Trip Ra	ate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Automobile Care Center	720.27	720.27	720.27	1,453,978	1,031,482
Other Asphalt Surfaces	0.00	0.00	0.00		
Other Non-Asphalt Surfaces	0.00	0.00	0.00		
Total	720.27	720.27	720.27	1,453,978	1,031,482

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Automobile Care Center	16.60	8.40	6.90	33.00	48.00	19.00	35	65	0
Other Asphalt Surfaces	16.60	8.40	6.90	0.00	0.00	0.00	0	0	0
Other Non-Asphalt Surfaces	16.60	8.40	6.90	0.00	0.00	0.00	0	0	0

4.4 Fleet Mix

Page 25 of 34

07402002 Sunny Express Car Wash - Riverside-South Coast County, Annual

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Automobile Care Center	0.545527	0.036856	0.186032	0.115338	0.015222	0.004970	0.017525	0.069528	0.001397	0.001160	0.004547	0.000932	0.000965
Other Asphalt Surfaces	0.545527	0.036856	0.186032	0.115338	0.015222	0.004970	0.017525	0.069528	0.001397	0.001160	0.004547	0.000932	0.000965
Other Non-Asphalt Surfaces	0.545527	0.036856	0.186032	0.115338	0.015222	0.004970	0.017525	0.069528	0.001397	0.001160	0.004547	0.000932	0.000965

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

Exceed Title 24

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Electricity Mitigated						0.0000	0.0000		0.0000	0.0000	0.0000	16.4369	16.4369	6.8000e- 004	1.4000e- 004	16.4957
Electricity Unmitigated	n					0.0000	0.0000		0.0000	0.0000	0.0000	17.5801	17.5801	7.3000e- 004	1.5000e- 004	17.6430
NaturalGas Mitigated	8.2000e- 004	7.4300e- 003	6.2400e- 003	4.0000e- 005		5.6000e- 004	5.6000e- 004		5.6000e- 004	5.6000e- 004	0.0000	8.0882	8.0882	1.6000e- 004	1.5000e- 004	8.1362
NaturalGas Unmitigated	9.5000e- 004	8.6600e- 003	7.2700e- 003	5.0000e- 005		6.6000e- 004	6.6000e- 004		6.6000e- 004	6.6000e- 004	0.0000	9.4249	9.4249	1.8000e- 004	1.7000e- 004	9.4809

5.2 Energy by Land Use - NaturalGas

<u>Unmitigated</u>

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					ton	s/yr							MT	'/yr		
Automobile Care Center	176616	9.5000e- 004	8.6600e- 003	7.2700e- 003	5.0000e- 005		6.6000e- 004	6.6000e- 004		6.6000e- 004	6.6000e- 004	0.0000	9.4249	9.4249	1.8000e- 004	1.7000e- 004	9.4809
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Other Non- Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total		9.5000e- 004	8.6600e- 003	7.2700e- 003	5.0000e- 005		6.6000e- 004	6.6000e- 004		6.6000e- 004	6.6000e- 004	0.0000	9.4249	9.4249	1.8000e- 004	1.7000e- 004	9.4809

Mitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					ton	s/yr			-				МТ	/yr		
Automobile Care Center	151567	8.2000e- 004	7.4300e- 003	6.2400e- 003	4.0000e- 005		5.6000e- 004	5.6000e- 004		5.6000e- 004	5.6000e- 004	0.0000	8.0882	8.0882	1.6000e- 004	1.5000e- 004	8.1362
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Other Non- Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total		8.2000e- 004	7.4300e- 003	6.2400e- 003	4.0000e- 005		5.6000e- 004	5.6000e- 004		5.6000e- 004	5.6000e- 004	0.0000	8.0882	8.0882	1.6000e- 004	1.5000e- 004	8.1362

Page 27 of 34

07402002 Sunny Express Car Wash - Riverside-South Coast County, Annual

5.3 Energy by Land Use - Electricity

<u>Unmitigated</u>

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		ΜT	7/yr	
Automobile Care Center	55175.4	17.5801	7.3000e- 004	1.5000e- 004	17.6430
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000
Other Non- Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000
Total		17.5801	7.3000e- 004	1.5000e- 004	17.6430

Mitigated

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		МТ	7/yr	
Automobile Care Center	51587.6	16.4369	6.8000e- 004	1.4000e- 004	16.4957
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000
Other Non- Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000
Total		16.4369	6.8000e- 004	1.4000e- 004	16.4957

6.0 Area Detail

6.1 Mitigation Measures Area

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Mitigated	0.0261	0.0000	2.0000e- 004	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	3.8000e- 004	3.8000e- 004	0.0000	0.0000	4.1000e- 004
Unmitigated	0.0261	0.0000	2.0000e- 004	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	3.8000e- 004	3.8000e- 004	0.0000	0.0000	4.1000e- 004

6.2 Area by SubCategory

Unmitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					ton	s/yr							MT	/yr		
	3.2100e- 003					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products	0.0228					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping	2.0000e- 005	0.0000	2.0000e- 004	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	3.8000e- 004	3.8000e- 004	0.0000	0.0000	4.1000e- 004
Total	0.0261	0.0000	2.0000e- 004	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	3.8000e- 004	3.8000e- 004	0.0000	0.0000	4.1000e- 004

Page 29 of 34

07402002 Sunny Express Car Wash - Riverside-South Coast County, Annual

6.2 Area by SubCategory

Mitigated

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory		tons/yr								МТ	/yr					
Architectural Coating	3.2100e- 003					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	0.0228					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping	2.0000e- 005	0.0000	2.0000e- 004	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	3.8000e- 004	3.8000e- 004	0.0000	0.0000	4.1000e- 004
Total	0.0261	0.0000	2.0000e- 004	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	3.8000e- 004	3.8000e- 004	0.0000	0.0000	4.1000e- 004

7.0 Water Detail

7.1 Mitigation Measures Water

Page 30 of 34

07402002 Sunny Express Car Wash - Riverside-South Coast County, Annual

	Total CO2	CH4	N2O	CO2e
Category		MT	ī/yr	
initigated	3.3961	0.0168	4.2000e- 004	3.9420
Ginnigatou	3.3961	0.0168	4.2000e- 004	3.9420

7.2 Water by Land Use

<u>Unmitigated</u>

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal		ΜT	√yr	
Automobile Care Center	0.511801 / 0.313685		0.0168	4.2000e- 004	3.9420
Other Asphalt Surfaces	0/0	0.0000	0.0000	0.0000	0.0000
Other Non- Asphalt Surfaces	0/0	0.0000	0.0000	0.0000	0.0000
Total		3.3961	0.0168	4.2000e- 004	3.9420

Page 31 of 34

07402002 Sunny Express Car Wash - Riverside-South Coast County, Annual

7.2 Water by Land Use

Mitigated

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal		ΜT	√yr	
	0.511801 / 0.313685	3.3961	0.0168	4.2000e- 004	3.9420
Other Asphalt Surfaces	0/0	0.0000	0.0000	0.0000	0.0000
Other Non- Asphalt Surfaces	0/0	0.0000	0.0000	0.0000	0.0000
Total		3.3961	0.0168	4.2000e- 004	3.9420

8.0 Waste Detail

8.1 Mitigation Measures Waste

Institute Recycling and Composting Services

Page 32 of 34

07402002 Sunny Express Car Wash - Riverside-South Coast County, Annual

Category/Year

	Total CO2	CH4	N2O	CO2e			
		MT/yr					
Mitigated		0.0623	0.0000	2.6126			
Unmitigated		0.2493	0.0000	10.4503			

8.2 Waste by Land Use

<u>Unmitigated</u>

	Waste Disposed	Total CO2	CH4	N2O	CO2e
Land Use	tons		MT	/yr	
Automobile Care Center	20.78	4.2182	0.2493	0.0000	10.4503
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000
Other Non- Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000
Total		4.2182	0.2493	0.0000	10.4503

Page 33 of 34

07402002 Sunny Express Car Wash - Riverside-South Coast County, Annual

8.2 Waste by Land Use

Mitigated

	Waste Disposed	Total CO2	CH4	N2O	CO2e
Land Use	tons		МТ	/yr	
Automobile Care Center	5.195	1.0545	0.0623	0.0000	2.6126
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000
Other Non- Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000
Total		1.0545	0.0623	0.0000	2.6126

9.0 Operational Offroad

	-	-				-
Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type
----------------	--------	-----------	------------	-------------	-------------	-----------

Boilers

Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type
----------------	--------	----------------	-----------------	---------------	-----------

User Defined Equipment

Equipment Type N

Number

Page 34 of 34

07402002 Sunny Express Car Wash - Riverside-South Coast County, Annual

11.0 Vegetation

	Total CO2	CH4	N2O	CO2e		
Category	MT					
Unmitigated		0.0000	0.0000	0.0000		

11.2 Net New Trees

Species Class

	Number of Trees	Total CO2	CH4	N2O	CO2e	
		МТ				
Miscellaneous	0	0.0000	0.0000	0.0000	0.0000	
Total		0.0000	0.0000	0.0000	0.0000	